V = u + at
0 = u -9.8 x 5.5
u = 9.8 x 5.5 = 53.9 m/s
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by
where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m
T = 20.0 N
Substituting into the equation, we find the fundamental frequency:
The next frequencies (harmonics) are given by
with n being an integer number and f being the fundamental frequency.
So we get:
Answer:
E. all of these
Explanation:
The designation of a point in space all the points that necessary
- reference point
- a direction
- fundamental units
- a direction
- motion
all are necessary to designate a point in space. Hence option E is correct.
For example in simple harmonic motion we need to specify all the above factors of the object in order to designate the position of the object.
Explanation:
Given that,
Angle by the normal to the slip α= 60°
Angle by the slip direction with the tensile axis β= 35°
Shear stress = 6.2 MPa
Applied stress = 12 MPa
We need to calculate the shear stress applied at the slip plane
Using formula of shear stress
Put the value into the formula
Since, the shear stress applied at the slip plane is less than the critical resolved shear stress
So, The crystal will not yield.
Now, We need to calculate the applied stress necessary for the crystal to yield
Using formula of stress
Put the value into the formula
Hence, This is the required solution.
It's highly reactive and contains only one valence electron