1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
noname [10]
3 years ago
13

KVL holds for the supermesh, so we can write a KVL equation to generate the second equation we need to solve for the two unknown

mesh currents, ixix and iyiy. Write the KVL equation for the supermesh by summing the voltages around the supermesh in the direction of the mesh currents and setting the sum to zero.

Engineering
1 answer:
kaheart [24]3 years ago
8 0

Answer:

The values of i_x,i_y and i_z as 25 mA, -25 mA and 15 mA while that of V_Δ is -25 V

Explanation:

As the complete question is not given the complete question is found online and is attached herewith.

By applying KCL at node 1

i_x+50mA=i_y\\i_x-i_y=0.05A

Also

V_{\Delta}=1K*i_y

Now applying KVL on loop 1 as indicated in the attached figure

1K*i_y+5K(i_y-i_z)+3K*i_x=0\\3i_x+6 i_y-5i_z=0

Similarly for loop 2

2V_{\Delta}+5K(i_z-i_y)=0\\2*1K*i_y+5K(i_z-i_y)=0\\2K*i_y+5K(i_z-i_y)=0\\3i_y-5i_z=0

So the system of equations become

i_x-i_y+0i_z=0.05\\3i_x+6i_y-5i_z=0\\0i_x-3i_y+5i_z=0

Solving these give the values of i_x,i_y and i_z as 25 mA, -25 mA and 15 mA. Also the value of voltage is given as

V_{\Delta}=1K*i_y\\V_{\Delta}=1K*-25 mA\\V_{\Delta}=-25 V

The values of i_x,i_y and i_z as 25 mA, -25 mA and 15 mA while that of V_Δ is -25 V

You might be interested in
A growing trend in urban design is the concept of a rooftop garden. If every building in a city were to install a rooftop garden
vlabodo [156]

Answer:The Urban heat island temperature will be REDUCED.

Two Impacts of Rooftop gardens

1) provision of shade against Sunlight.

2) It helps to purify the air around the building.

Explanation: Rooftop gardens are gardens made on top of the roofs of buildings, it is a Green initiative aimed at helping to improve the overall Environment.

Rooftop gardens have several significant benefits which includes

Reduction of the surrounding temperatures and the Urban heat Island temperatures.

Rooftop gardens helps to shade the roof from the direct impacts of harsh weather conditions.

Generally, plants are known as air purifiers as they remove the excess Carbondioxide around the environment through photosynthesis, and they also help to release water vapor which will help to improve the humidity of the environment.

5 0
3 years ago
8. Two 40 ft long wires made of differing materials are supported from the ceiling of a testing laboratory. Wire (1) is made of
san4es73 [151]

Answer:

Material K has a modulus of elasticity E=3.389× 10¹¹ Pa

Material H has a modulus of elasticity E=1.009 × 10⁹ Pa

Material K has higher value of modulus of elasticity than material H

Material K is stiffer.

Explanation:

Wire 1 material H

Length=L = 40 ft =12.192 m

Diameter= 3/8 in = 0.009525 m

Area= A= πr²,where r=0.009525/2 =0.004763

A=3.142*0.004763² =0.00007126 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.10 in = 0.00254

To find modulus of elasticity apply'

E=F*L/A*ΔL

E=1001.25*12.192/(0.004763*0.00254)

E= 1009027923.58 Pa

E=1.009 × 10⁹ Pa

For Wire 2 material K

Length=L= 40 ft =12.192 m

Diameter = 3/16 in = 0.1875 in = 0.004763 m

Area= πr² = 3.142 * (0.004763/2)² = 0.00000567154 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.25 in =0.00635 m

To find modulus of elasticity apply'

E=F*L/A*ΔL

E= (1001.25*12.192)/(0.00000567154 * 0.00635 )

E=338955422575 Pa

E=3.389× 10¹¹ Pa

Material  K has a greater modulus of elasticity

The material with higher value of E is stiffer than that with low value of E.The stiffer material is K.

8 0
3 years ago
2) The switch in the circuit below has been closed a long time. At t=0, it is opened.
saul85 [17]

Answer:

  il(t) = e^(-100t)

Explanation:

The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.

The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...

  il(t) = e^(-t/.01)

  il(t) = e^(-100t) . . . amperes

8 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
A(n) ____ is an object setting used to control the visible display of objects.
KatRina [158]
Remote?? maybe I’m not really sure
3 0
3 years ago
Other questions:
  • An immersion heater has a resistance of 50Ω and carries a current of 2.5A current. What will be the final temperature of 500 g o
    11·1 answer
  • Pine Valley Furniture wants to use Internet systems to provide value to its customers and staff. There are many software technol
    5·1 answer
  • What are the two safety precautions taken before driving a car​
    12·1 answer
  • 1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are rem
    5·1 answer
  • So in my settings i set it to send notifications too my email so ik when smtn happens but it doesn't even send stuff too it.....
    11·1 answer
  • What does an aeronautical engineer design
    15·1 answer
  • A water agency stated that waterlines cannot have water flowing faster than 8 ft/s. What is the minimum standard pipe diameter t
    12·1 answer
  • An ideal gas mixture has a volume base composition of 40% Ar and 60% Ne (monatomic gases). The mixture is now heated at constant
    8·1 answer
  • At the instant shown car A is travelling with a velocity of 24 m/s and which is decreasing at 4 m/s2 along the highway. At the s
    14·1 answer
  • Two children are playing on a seesaw. The child on the left weighs 50 lbs. And the child on the right weighs 100 lbs. If the chi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!