Answer:
Q = 63,827.5 W
Explanation:
Given:-
- The dimensions of plate A = ( 10 mm x 1 m )
- The fluid comes at T_sat , 1 atm.
- The surface temperature, T_s = 75°C
Find:-
Determine the total condensation rate of water vapor onto the front surface of a vertical plate
Solution:-
- Assuming drop-wise condensation the heat transfer coefficient for water is given by Griffith's empirical relation for T_sat = 100°C.
h = 255,310 W /m^2.K
- The rate of condensation (Q) is given by Newton's cooling law:
Q = h*As*( T_sat - Ts )
Q = (255,310)*( 0.01*1)*( 100 - 75 )
Q = 63,827.5 W
Answer:
Increases
Explanation:
By inhibiting the motion of dislocations by impurities in a solid solutions, is a strengthening mechanism. In solid solutions it is atomic level strengthening resulting from resistance to dislocation motion. Hence, the strength of the alloys can differ with respect to the precipitate's property. Example, the precipitate is stronger (ability to an obstacle to the dislocation motion) than the matrix and it shows an improvement of strength.
Answer:
because burning rubber increases the grip power