Answer is: the absolute pressure of the air in the balloon is 1.015 atm (102.84 kPa).
n = 0.250 mol; amount of substance.
V = 6.23 L; volume of the balloon.
T = 35°C = 308.15 K; temperature.
R = 0.08206 L·atm/mol·K, universal gas constant.
Ideal gas law: p·V = n·R·T.
p = n·R·T / V.
p = 0.250 mol · 0.08206 L·atm/mol·K · 308.15 K / 6.23 L.
p = 1.015 atm; presure of the air.
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer:
Ammonium nitrate, (NH4NO3), a salt of ammonia and nitric acid, used widely in fertilizers and explosives. The commercial grade contains about 33.5 percent nitrogen, all of which is in forms utilizable by plants; it is the most common nitrogenous component of artificial fertilizers.
35 Celsius minus the average 20 Celsius. going to be 15. let me know if u need anything else.
To solve this problem we just need to use the rule of three:
150g..................395.1J
450g................xJ
x = 450*395.1/150 = 1185,3J
450.0 g of the substance completely reacted with oxygen will produce 1.1853 kJ(<span>kiloJoule</span>)