Answer:
5. Atoms with high ionization energies and high electron affinities have low electronegativities.
Explanation:
Ionization energy is the minimum amount of energy which is required to knock out the loosely bound valence electron from the isolated gaseous atom.
Electron affinity is the amount of energy released when an isolated gaseous atom accepts electron to form the corresponding anion.
Electronegativity is the tendency of an atom in a bond pair to attract the shared pair of electron towards itself.
Low ionization energies as well as low electron affinities mean the atom has low effective nuclear charge, which results in the less attraction of the valence electrons by the atom and thus, low electronegativity.
They must obey the Law of Conservation of Mass that states that matter cannot be created or destroyed, it is conserved. Atoms are never lost or gained in chemical reactions, they are rearranged. The mass of the reactants must equal the mass of the products.
The number with a lower value is the number of protons and the number with a higher value is the mass
Answer:
Magnesium I’m pretty sure
Explanation:
Answer:The correct answer is ;
The oxidation state of nitrogen in NO changes from +2 to 0, and the oxidation state of carbon in CO changes from +2 to +4 as the reaction proceeds.
Explanation:

In an oxidation recation addition of oxygen atom takes place or loss of electrons takes place.
In an reduction reaction removal of oxygen atom takes place or gain of electrons takes place.
In the given reaction , the nitrogen atom is present in +2 oxidation state in NO molecule and present in 0 oxidation state in
molecule. Hence, nitrogen is getting reduced that is reduction reaction. NO is oxidizing agent
In the given reaction , the carbon atom is present in +2 oxidation state in CO molecule and present in +4 oxidation state in
molecule. Hence ,carbon is getting oxidized that is oxidation reaction. CO is a reducing agent.