Answer:
Explanation:
There will be loss of potential energy due to loss of height and gain of kinetic energy .
loss of height = R - R cos 14 , R is radius of hemisphere .
R ( 1 - cos 12 )
= 13 ( 1 - .978 )
h = .286 m
loss of potential energy
= mgh
= m x 9.8 x .286
= 2.8 m
gain of kinetic energy
1/2 m v ² = mgh
v² = 2 g h
v² = 2 x 9.8 x 2.8
v = 7.40 m /s
To prepare a 10.0% w/v solution of salt in water in a 100 mL volumetric flask, first you must weigh 10 g of salt because the 10 % 100 is 10 and the given should be 10 % w/v. place the 10 g salt to the volumetric flask then add water up until to mark of the volumetric flask then shake it.
work is done by the pulling force which is same as the tension force in the rope. the net work done is zero for the crate since crate moves at constant velocity. but there is work done by the tension force which is equal in magnitude to the work done by the frictional force.
T = tension force in the rope = 115 N
d = displacement of the crate = 7.0 m
θ = angle between the direction of tension force and displacement = 37 deg
work done on the crate is given as
W = F d Cosθ
inserting the values given above
W = (115) (7.0) Cos37
W = 643 J
Answer:
Option A
Explanation:
An Uninterruptible Power Supply abbreviated as UPS is used in case of the failure of the power mains or the input power in order to ensure uninterrupted power supply.
The Ac voltage is first converted to DC and then again inverted to the AC and is fed to the system.
Thus if the UPS malfunctions then in order to check the output using multimeter we use AC voltage setting because the UPS purely supplies AC power, even if the power is supplied from its internal battery then also it inverts the DC into AC and then supply.
The more mass the vehicle has, the more that is needed to stop the vehicle in motion.