Answer:
(a) Wavelength is 0.436 m
(b) Length is 0.872 m
(c) 11.518 m/s
Solution:
As per the question:
The eqn of the displacement is given by:
(1)
n = 4
Now,
We know the standard eqn is given by:
(2)
Now, on comparing eqn (1) and (2):
A = 1.22 cm
K = 

where
A = Amplitude
K = Propagation constant
= angular velocity
Now, to calculate the string's wavelength,
(a) 
where
K = propagation vector


(b) The length of the string is given by:


(c) Now, we first find the frequency of the wave:



Now,
Speed of the wave is given by:


Answer:
-0.0047 rad/s²
335.103 seconds
99.18 seconds
Explanation:
= Final angular velocity
= Initial angular velocity = 1.5 ra/s
= Angular acceleration
= Angle of rotation = 40 rev
t = Time taken
Equation of rotational motion

Acceleration while slowing down is -0.0047 rad/s²

Time taken to slow down is 335.103 seconds

Solving the equation

The time required for it to complete the first 20 is 99.18 seconds as 539.11>335.103
Answer:
fixed cost $231220
Explanation:
given data:
quantity of skl mask = 22,940
skl mass rate = $19 each
variable cost = $6 per unit
therefore
Contribution/unit of ski mask = 19 - 6 = $13
for 22940 ski masks, total cost = (22940*13) = 298220
Depreciation cost $67000
fixed cost is = 298220 - 67000 = $231220
Answer:
The answer is C. Kinetic energy
Explanation:
Generators don't actually create electricity. Instead, they convert mechanical or chemical energy into electrical energy. They do this by capturing the power of motion and turning it into electrical energy by forcing electrons from the external source through an electrical circuit.
Answer:

Explanation:
Given that,
Initial speed of a shuttlecock, u = 30 m/s
Final speed of the shuttlecock, v = 10 m/s
Time, t = 0.5 s
We need to find its average acceleration. The acceleration of an object is equal to the change in speed divided by time taken. It is given by :

So, the average acceleration of badminton shuttlecock is
.