1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
4 years ago
5

The allowed energies of a simple atom are 0.0 eV, 3.0 eV, and 4.0 eV. An electron traveling at a speed of 1.3*10^6 m/s collision

ally excites the atom.Part A: What is the minimum speed the electron could have after the collision?Part B: What is the maximum speed the electron could have after the collision?
Physics
1 answer:
ss7ja [257]4 years ago
3 0

A) 5.34\cdot 10^5 m/s

The minimum speed of the electron occurs when the electron loses the maximum energy: this occurs when the electron excites the atom from 0.0 eV to 4.0 eV, because in this case the energy given to the atom is maximum.

The energy given by the electron to the atom is equal to the difference between the two energy levels:

\Delta E= 0.0 eV - 4.0 eV =-4.0 eV = -6.4\cdot 10^{-19}J

This is equal to the kinetic energy lost by the electron:

K_f - K_ i = \Delta E\\\frac{1}{2}m(v^2-u^2) = \Delta E

where

m is the electron's mass

v is the final speed of the electron after the collision

u=1.3\cdot 10^6 m/s is the speed of the electron before the collision

Solving for v, we find

v=\sqrt{ \frac{2\Delta E}{m}+u^2}=\sqrt{\frac{2 (-6.4\cdot 10^{-19} J)}{9.11\cdot 10^{-31} kg}+(1.3\cdot 10^6 m/s)^2}=5.34\cdot 10^5 m/s

B) 1.16\cdot 10^6 m/s

The maximum speed of the electron occurs when the electron loses the minimum amount of energy: this occurs when the electron excites the atom from 3.0 eV to 4.0 eV, because in this case the energy given to the atom is minimum.

The energy given by the electron to the atom is equal to the difference between the two energy levels, so in this case we have:

\Delta E= 3.0 eV - 4.0 eV =-1.0 eV = -1.6\cdot 10^{-19}J

And so, this time the final speed of the electron after the collision will be given by:

v=\sqrt{ \frac{2\Delta E}{m}+u^2}=\sqrt{\frac{2 (-1.6\cdot 10^{-19} J)}{9.11\cdot 10^{-31} kg}+(1.3\cdot 10^6 m/s)^2}=1.16\cdot 10^6 m/s

You might be interested in
When you take your 1900-kg car out for a spin, you go around a corner of radius 55 m with a speed of 15 m/s. The coefficient of
pentagon [3]

Answer:

7772.72N

Explanation:

When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page  (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.

Now which direction is the static friction, assume that it is pointing inward so

Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N

Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.

7 0
3 years ago
If the rifle is stopped by the hunter’s shoulder in a distance of 3.16 cm, what is the magnitude of the average force exerted on
solniwko [45]
Did you get a correct answer to your question?
8 0
3 years ago
Read 2 more answers
Will brainlist 20 points
Len [333]

Your answer for this question is the third option.

3 0
3 years ago
Read 2 more answers
How much power is used if a force of 54 newtons is used to pull a wagon a distance of 10 meters in 6 seconds?
AnnZ [28]
First, calculate the work done: 54 x 10 = 540J.
Now calculate power: 540 / 6 = 90.
The answer is 90W.

Hope this helps.
7 0
3 years ago
Read 2 more answers
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.6 m/s at ground level.
kow [346]

Before the engines fail, the rocket's altitude at time <em>t</em> is given by

y_1(t)=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

and its velocity is

v_1(t)=80.6\dfrac{\rm m}{\rm s}+\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t

The rocket then reaches an altitude of 1150 m at time <em>t</em> such that

1150\,\mathrm m=\left(80.6\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(3.90\dfrac{\rm m}{\mathrm s^2}\right)t^2

Solve for <em>t</em> to find this time to be

t=11.2\,\mathrm s

At this time, the rocket attains a velocity of

v_1(11.2\,\mathrm s)=124\dfrac{\rm m}{\rm s}

When it's in freefall, the rocket's altitude is given by

y_2(t)=1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity, and its velocity is

v_2(t)=124\dfrac{\rm m}{\rm s}-gt

(a) After the first 11.2 s of flight, the rocket is in the air for as long as it takes for y_2(t) to reach 0:

1150\,\mathrm m+\left(124\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=32.6\,\mathrm s

So the rocket is in motion for a total of 11.2 s + 32.6 s = 43.4 s.

(b) Recall that

{v_f}^2-{v_i}^2=2a\Delta y

where v_f and v_i denote final and initial velocities, respecitively, a denotes acceleration, and \Delta y the difference in altitudes over some time interval. At its maximum height, the rocket has zero velocity. After the engines fail, the rocket will keep moving upward for a little while before it starts to fall to the ground, which means y_2 will contain the information we need to find the maximum height.

-\left(124\dfrac{\rm m}{\rm s}\right)^2=-2g(y_{\rm max}-1150\,\mathrm m)

Solve for y_{\rm max} and we find that the rocket reaches a maximum altitude of about 1930 m.

(c) In part (a), we found the time it takes for the rocket to hit the ground (relative to y_2(t)) to be about 32.6 s. Plug this into v_2(t) to find the velocity before it crashes:

v_2(32.6\,\mathrm s)=-196\frac{\rm m}{\rm s}

That is, the rocket has a velocity of 196 m/s in the downward direction as it hits the ground.

3 0
3 years ago
Other questions:
  • 1 An ice cube has the following dimensions.
    10·1 answer
  • The origins of Yoga can be traced back to which ancient scholar?​
    14·2 answers
  • What is Mach 2 in miles per hour?
    13·1 answer
  • How do different forces act on a system
    14·1 answer
  • The position vector of a particle of mass 1.65 kg as a function of time is given by = (6.00 î + 4.15 t ĵ), where is in meters an
    10·1 answer
  • Which of the followings did newton help create ?
    15·2 answers
  • As the speed/velocity of an object increases what happens to the kinetic energy of the object
    5·2 answers
  • Convert the value of g=9.8m/s^2 into km/hr^2​
    13·1 answer
  • Pls answer……………………..
    15·1 answer
  • Tritium, the 3H atom, consists of a nucleus of one proton and two neutrons with a single electron. It is unstable and decays via
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!