Answer:
Explanation:
q = 2e = 3.2 x 10^-19 C
mass, m = 6.68 x 10^-27 kg
Kinetic energy, K = 22 MeV
Current, i = 0.27 micro Ampere = 0.27 x 10^-6 A
(a) time, t = 2.8 s
Let N be the alpha particles strike the surface.
N x 2e = q
N x 3.2 x 10^-19 = i t
N x 3.2 x 10^-19 = 0.27 x 10^-6 x 2.8
N = 2.36 x 10^12
(b) Length, L = 16 cm = 0.16 m
Let N be the alpha particles
K = 0.5 x mv²
22 x 1.6 x 10^-13 = 0.5 x 6.68 x 10^-27 x v²
v² = 1.054 x 10^15
v = 3.25 x 10^7 m/s
So, N x 2e = i x t
N x 2e = i x L / v
N x 3.2 x 10^-19 = 2.7 x 10^-7 x 0.16 / (3.25 x 10^7)
N = 4153.85
(c) Us ethe conservation of energy
Kinetic energy = Potential energy
K = q x V
22 x 1.6 x 10^-13 = 2 x 1.5 x 10^-19 x V
V = 1.17 x 10^7 V
We know that 1 minute= 60 seconds (or 1 min= 60 s).
10 min* (60 s/ 1 min)* (2.0 m/ 1 s)= 1,200 m.
(Note that the units cancel out so you get the answer)
The final answer is 1,200 m.
Hope this helps~
Answer:
Friction is a force that opposes motion.
Answer:

Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,

Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 
So,


l = 0.024 m
Then for relativistic length contraction,







Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).
Answer:
If the rifle is held loosely away from the shoulder, the recoil velocity will be of -8.5 m/s, and the kinetic energy the rifle gains will be 81.28 J.
Explanation:
By momentum conservation, <em>and given the bullit and the recoil are in a straight line</em>, the momentum analysis will be <em>unidimentional</em>. As the initial momentum is equal to zero (the masses are at rest), we have that the final momentum equals zero, so

now we clear
and use the given data to get that

<em>But we have to keep in mind that the bullit accelerate from rest to a speed of 425 m/s</em>, then <u>if the rifle were against the shoulder, the recoil velocity would be a fraction of the result obtained</u>, but, as the gun is a few centimeters away from the shoulder, it is assumed that the bullit get to its final velocity, so the kick of the gun, gets to its final velocity
too.
Finally, using
we calculate the kinetic energy as
