The image distance when a boy holds a toy soldier in front of a concave mirror, with a focal length of 0.45 m. is -0.56 m.
<h3>What is image distance?</h3>
This is the distance between the image formed and the focus when an object is placed in front of a plane mirror.
To calculate the image distance, we use the formula below.
Formula:
- 1/f = 1/u+1/v........... Equation 1
Where:
- f = Focal length of the mirror
- v = Image distance
- u = object distance
From the question,
Given:
Substitute these values into equation 1 and solve for the image distance
- 1/0.45 = 1/0.25 + 1/v
- 2.22 = 4+1/v
- 1/v = 2.22-4
- 1/v = -1.78
- v = 1/(-1.78)
- v = -0.56 m
Hence, The image distance is -0.56 m.
Learn more about image distance here: brainly.com/question/17273444
X =(3.00x4.00 x3-1.00t x 2.00) x m
x= (12.00x3- 1.00 x2.00) x m
x= 36.00 -1.00 x 2.00) x m
x = (36.00 -2.00) x m
x =( 34.00) x m
x =34.00 times m
The correct answer is:
<span>The rate at which a waves energy flows through a given unit of area
In fact, light intensity is defined as the light power per unit of area:
</span>

<span>but the power is the energy carried by the light per unit of time:
</span>

<span>this means that the intensity can be rewritten as
</span>

<span>
So, it's basically the rate of energy (per unit of time) through a given surface.</span>