Answer:
Winner wins by 0.969 s
Explanation:
For the Porche:
Given:
Displacement of Porsche s = 400 m
Acceleration of Porsche a = 3.4 m/s^2
From Newton's second equation of motion,
(u = 0 as the car was initially at rest)
Substituting the values into the equation, we have
= 235.29 / 3.4
t = 15.33 s
For the Honda:
Displacement of Honda = 310 m
Acceleration of Honda = 3 m/s^2
Applying Newton's second equation of motion
(u = 0 for same reason)
Substituting the values into the equation, we obtain
= 620 / 3
t = 14.37 s
Hence
The winner (honda) wins by a time interval of = 15.33 - 14.37
=0.969 s
ANSWER - (1) are constantly moving (2) have volume (3) have intermolecular forces (4) undergo perfectly elastic collisions (5) have an average kinetic energy proportional to the ideal gas’s absolute temperature
Answer:
d. perfectly elastic
Explanation:
According to the kinetic theory for collisions of gas molecules:
1.The loss of energy is negligible or we can say that it is zero.
2.Molecules of the gas move in a random manner.
3.The collision between molecules and with the wall of the container is perfectly elastic.That is why loss in the energy is zero.
Therefore the correct answer will be d.
d. perfectly elastic
Answer:
Explanation:
Gravitational law states that, the force of attraction or repulsion between two masses is directly proportional to the product of the two masses and inversely proportional to the square of their distance apart.
So,
Let the masses be M1 and M2,
F ∝ M1 × M2
Let the distance apart be R
F ∝ 1 / R²
Combining the two equation
F ∝ M1•M2 / R²
G is the constant of proportional and it is called gravitational constant
F = G•M1•M2 / R²
So, to increase the gravitational force, the masses to the object must be increased and the distance apart must be reduced.
So, option c is correct
C. Both objects have large masses and are close together.
Answer:
Aerobic exercise became part of this movement in the 1970s.