Answer:
v₂ = 7/ (0.5)= 14 m/s
Explanation:
Flow rate of the fluid
Flow rate is the amount of fluid that circulates through a section of the pipeline (pipe, pipeline, river, canal, ...) per unit of time.
The formula for calculated the flow rate is:
Q= v*A Formula (1)
Where :
Q is the Flow rate (m³/s)
A is the cross sectional area of a section of the pipe (m²)
v is the speed of the fluid in that section (m/s)
Equation of continuity
The volume flow rate Q for an incompressible fluid at any point along a pipe is the same as the volume flow rate at any other point along a pipe:
Q₁= Q₂
Data
A₁ = 2m² : cross sectional area 1
v₁ = 3.5 m/s : fluid speed through A₁
A₂ = 0.5 m² : cross sectional area 2
Calculation of the fluid speed through A₂
We aply the equation of continuity:
Q₁= Q₂
We aply the equation of Formula (1):
v₁*A₁= v₂*A₂
We replace data
(3.5)*(2)= v₂*(0.5)
7 = v₂*(0.5)
v₂ = 7/ (0.5)
v₂ = 14 m/s
Answer:
The value is 
Explanation:
From the question we are told that
The period of the asteroid is 
Generally the average distance of the asteroid from the sun is mathematically represented as
![R = \sqrt[3]{ \frac{G M * T^2 }{4 \pi} }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7BG%20M%20%2A%20T%5E2%20%7D%7B4%20%5Cpi%7D%20%7D)
Here M is the mass of the sun with a value

G is the gravitational constant with value 
![R = \sqrt[3]{ \frac{6.67 *10^{-11} * 1.99*10^{30} * [5.55 *10^{9}]^2 }{4 * 3.142 } }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6.67%20%2A10%5E%7B-11%7D%20%20%2A%201.99%2A10%5E%7B30%7D%20%2A%20%5B5.55%20%2A10%5E%7B9%7D%5D%5E2%20%7D%7B4%20%2A%203.142%20%7D%20%7D)
=> 
Generally

So

=> 
=> 
Answer:

and

Explanation:
Given:
- first charge,

- second charge,

- position of first charge,

- position of second charge,

Now since there are only 2 charges and of the same sign so they repel each other. This repulsion will be zero at some point on the line joining the charges.
<u>Now, according to the condition, electric field will be zero where the effects of field due to both the charges is equal.</u>

- since first charge is greater than the second charge so we may get a point to the right of the second charge and the distance between the two charges is 1 meter.





Since we have assumed that the we may get a point to the right of second charge so we calculate with respect to the origin.

and

Answer: a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Explanation:
Acceleration is the rate of change in the velocity per time
a = change in velocity/time
a = ∆v/t
average acceleration a = (v2 -v1)/t. ....1
Given;
Final velocity v2 = 1.63m/s
Initial velocity v1 = -1.15ms
time taken t = 2.11s
Substituting into eqn 1
a = [1.63 - (-1.15)]/2.11
a = (1.63+1.15)/2.11
a = 2.78/2.11
a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
' C ' is the only correct statement on the list. We don't know anything about diagram-x or diagram-y because we can't see them.