<span>the kind of information that we could know about a person if that person's DNA is in a database is : C. sme diseases the person might have
Some diseases are proven to because by the passed DNA during reproduction process without any external factors.
Example of these diseases are : sicle cell anemia and colorblindess</span>
Answer: Option (D) is the correct answer.
Explanation:
The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.
So, it means more electrons are added to the same energy level.
Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.
Answer:
The longest wavelength of radiation that passesses the necessary energy for breaking the Cl- Cl bond (in Cl2) is approximately 494.2 nm, which corresponds to the visible spectrum.
Explanation:
In order to answer this question we need to recall that the energy of a photon is given by:
E = hc/lambda, where
E = energy
h = Planck's constant
c = speed of light in vacuum
lambda = associated photon wavelength
In order to perform the calculations, first we need to change the units of 242kJ/mol to J. For doing this, we to divide by Avogadro's number and multiply by a 1000:
242kJ/mol = (242kJ/mol)*(1mol/6.022x10^23 particles)*(1000J/1kJ)= 4.0186x10^-19 J
Now, we simply solve for lambda and substitute the appropriate values in the energy equation:
lambda = hc/E = (6.626x10^-34 J s)*(3x10^8 m/s)/(4.0186x10^-19 J) = (1.986x10^-25 J m)/(4.0186x10^-19 J) = 4.942x10^-7 m = 494.2x10^-9 m = 494.2 nm
Therefore, the wavelength for a photon to break the Cl-Cl bond in a Cl2 molecule should be 494.2 nm at most, which corresponds to the visible spectrum (The visible spectrum includes wavelengths between 400 nm and 750 nm).
I think it is false, because why would is be stronger in a different state?