It is important to use the same balance throughout the entire experiment since the calibration of each balance is not the same and changing balances could result in a systematic error.
There are three types of errors that could affect the results of the experiment. The effect of random or indeterminate errors is hard to predict, its effect on the results of the experiment could be different every time. The second type of error is the systematic or determinate error, which causes a shift in results in a specific direction. The last type of error in an experiment is human error.
The type of error that could be related to the use of different balances throughout the experiment is the systematic error. Instruments could be a source of error especially if they are poorly calibrated. Also, analytical balances are calibrated differently which may result in inaccuracy in the weighing of chemicals.
To learn more, please refer to brainly.com/question/11541675.
#SPJ4
I believe the answer is C !
Answer:
c) (12×0.9889) + (13×0.01108)
Explanation:
Given data:
Percentage of C-12 = 98.89%
Percentage of C-13 = 1.108%
Atomic mass = ?
Solution:
98.89/100 = 0.9889
1.108/ 100 = 0.01108
Atomic mass = (12×0.9889) + (13×0.01108)
Atomic mass = (11.8668 + 0.144034)
Atomic mass = 12.01084
Answer:
0.296 J/g°C
Explanation:
Step 1:
Data obtained from the question.
Mass (M) =35g
Heat Absorbed (Q) = 1606 J
Initial temperature (T1) = 10°C
Final temperature (T2) = 165°C
Change in temperature (ΔT) = T2 – T1 = 165°C – 10°C = 155°C
Specific heat capacity (C) =..?
Step 2:
Determination of the specific heat capacity of iron.
Q = MCΔT
C = Q/MΔT
C = 1606 / (35 x 155)
C = 0.296 J/g°C
Therefore, the specific heat capacity of iron is 0.296 J/g°C