Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.
Answer:
Explanation:
Initial velocity u = V₀ in upward direction so it will be negative
u = - V₀
Displacement s = H . It is downwards so it will be positive
Acceleration = g ( positive as it is also downwards )
Using the formula
v² = u² + 2 g s
v² = (- V₀ )² + 2 g H
= V₀² + 2 g H .
v = √ ( V₀² + 2 g H )
Answer:
Explanation:
a )
hear energy required to melt 1 g of ice = 340 J ,
hear energy required to melt 80 g of ice = 340 x 80 J = 27220 J .
b ) energy gained by the melted ice ( water at O°C ) = m ct
where m is mass of water , s is specific heat and t is rise in temperature
= 80 x 4.2 x ( 8°C - 0°C)
= 2688 J .
c )
energy lost by lime juice = energy gained by ice and water
= 27220 J + 2688 J .
= 29908 J .
d )
Let specific heat required be S
Heat lost by lime juice = M S T
M is mass of lime juice , S is specific heat , T is decrease in temperature
= 320 g x S x ( 29 - 8 )°C
= 6720 S
For equilibrium
Heat lost = heat gained
6720 S = 29908 J
S = 4.45 J /g °C .
Answer:
A maximum
Explanation:
When displacement is maximum, velocity is Zero and vice versa
When displacement is maximum, acceleration is maximum and when it is zero, acc. Is zero