Answer:
BOTH the size of the force AND the mass of the object
Explanation:
Acceleration of an object is the rate of change of its velocity.
The relation between force, mass and acceleration is given by the formula as follows :
F = ma
m is mass
a is acceleration
It would mean that the change in motion or the acceleration of an object depends on both the size of the force and the mass of the object. Hence, the correct option is (c).
Answer:
screw and pulley
Explanation:
because they didn't have any of the other tools in that time
Explanation:
can u pls ask the question again? No full information! I mean are you required the time it takes or what ?
Answer:
5 mg, 
Explanation:
First of all, let's rewrite the mass in grams using scientific notation.
we have:
m = 0.005 g
To rewrite it in scientific notation, we must count by how many digits we have to move the dot on the right - in this case three. So in scientific notation is

If we want to convert into milligrams, we must remind that
1 g = 1000 mg
So we can use the proportion

and we find

Answer:
(a) I_A=1/12ML²
(b) I_B=1/3ML²
Explanation:
We know that the moment of inertia of a rod of mass M and lenght L about its center is 1/12ML².
(a) If the rod is bent exactly at its center, the distance from every point of the rod to the axis doesn't change. Since the moment of inertia depends on the distance of every mass to this axis, the moment of inertia remains the same. In other words, I_A=1/12ML².
(b) The two ends and the point where the two segments meet form an isorrectangle triangle. So the distance between the ends d can be calculated using the Pythagorean Theorem:

Next, the point where the two segments meet, the midpoint of the line connecting the two ends of the rod, and an end of the rod form another rectangle triangle, so we can calculate the distance between the two axis x using Pythagorean Theorem again:

Finally, using the Parallel Axis Theorem, we calculate I_B:
