Answer:
Wear a helmet. Stay visible; use bike lights and/or wear bright clothes. Look and Signal; use hand signals to let drivers know where you're going, try to make eye contact with them and look before you go.
Explanation:
The truck would of went 150 miles
Answer:
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise
Explanation:
Given data
initial circumference = 165 cm
rate = 12.0 cm/s
magnitude = 0.500 T
tome = 9 sec
to find out
emf induced and direction
solution
we know emf in loop is - d∅/dt ........1
here ∅ = ( BAcosθ)
so we say angle is zero degree and magnetic filed is uniform here so that
emf = - d ( BAcos0) /dt
emf = - B dA /dt ..............2
so area will be
dA/dt = d(πr²) / dt
dA/dt = 2πr dr/dt
we know 2πr = c,
r = c/2π = 165 / 2π
r = 26.27 cm
c is circumference so from equation 2
emf = - B 2πr dr/dt ................3
and
here we find rate of change of radius that is
dr/dt = 12/2π = 1.91
cm/s
so when 9.0s have passed that radius of coil = 26.27 - 191 (9)
radius = 9.08
cm
so now from equation 3 we find emf
emf = - (0.500 ) 2π(9.08
) 1.91 
emf = - 0.005445
and magnitude of emf = 0.005445 V
so
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise
I have the exact same question, any chance you figured it out since you posted this?
The inductance of several inductors in series is the sum of all the individuals ... just like for resistors.
a). With 1.05H and 2.07H in series, the equivalent total inductance is <em>3.12H</em> , provided the inductors can't influence each other with their magnetic fields.
b). If you had 30 identical inductors in series, each with inductance of 3.03H, AND none of them could influence any other ones with their magnetic fields, their combined equivalent inductance would be
(30) · (3.03H) = <em>90.9 H</em> .