Answer:
a) 25.5 µH
b) 22.95 mV
Explanation:
Induced emf in a inductor is given by
E = L * di/dt, where
E is the voltage of the circuit
L is the inductance of the circuit
di/dt if the rate of inductance
A
So we have
0.0037 = L * 145
L = 0.0037 / 145
L = 0.0000255
L = 25.5 µH
B
i(t) = 225t²
Recall that
E = L * di/dt, so that
E = 25.5 µH * |225t²|
Differentiating with respect to t, we have
E = 25.5 * 2 * 225t
E = 25.5 * 450t
Solving for t = 2,we get
E = 25.5 * 450(2)
E = 25.5 * 900
E = 22950 µV or
E = 22.95 mV
Answer:
The answer is 129.041
Explanation:
Because when you add desimals you need to keep them lined up and not uneven
Answer:
Acceleration due to gravity will be 
Explanation:
We have given length of pendulum l = 55 cm = 0.55 m
It is given that pendulum completed 100 swings in 145 sec
So time taken by pendulum for 1 swing 
We have to find the acceleration due to gravity at that point
We know that time period of pendulum;um is given by

So 

Squaring both side


So acceleration due to gravity will be 
Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2