Answer:
V₁ = 374.71 mL
Explanation:
Given data:
Initial volume of gas= ?
Initial temperature = 22°C
Final temperature = 86°C
Final volume = 456 mL
Solution:
Initial temperature = 22°C (22+273 = 295 k)
Final temperature = 86°C (86+273 = 359 k)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₁ = 456 mL × 295 K / 359 k
V₁ = 134520 mL.K / 359 k
V₁ = 374.71 mL
Answer: The 234.74 grams of sample should be ordered.
Explanation:
Let the gram of 114 Ag to ordered be 
The amount required for the beginning of experiment = 0.0575 g
Time requires to ship the sample = 4.2hour = 252 min(1 hr = 60 min)
Half life of the sample =
= 21 min

![\log[N]=\log[N_o]-\frac{\lambda t}{2.303}](https://tex.z-dn.net/?f=%5Clog%5BN%5D%3D%5Clog%5BN_o%5D-%5Cfrac%7B%5Clambda%20t%7D%7B2.303%7D)
![\log[0.0575 g]=\log[N_o]-\frac{0.033 min^{-1}\times 252 min}{2.303}](https://tex.z-dn.net/?f=%5Clog%5B0.0575%20g%5D%3D%5Clog%5BN_o%5D-%5Cfrac%7B0.033%20min%5E%7B-1%7D%5Ctimes%20252%20min%7D%7B2.303%7D)

The 234.74 grams of sample should be ordered.
Answer:
<h2>1.11 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>1.11 g/mL</h3>
Hope this helps you
<span>Answer:
Graham's law of gaseous effusion states that the rate of effusion goes by the inverse root of the gas' molar mass.
râšM = constant
Therefore for two gases the ratio rates is given by:
r1 / r2 = âš(M2 / M1)
For Cl2 and F2:
r(Cl2) / r(F2) = âš{(37.9968)/(70.906)}
= 0.732 (to 3.s.f.)</span>