D.
both are stated to be in aqueous solutions by the (aq)
Heat capacity of aluminium = 0.900 J/g°C
While heat capacity of water = 4.186 J/g°C
Heat = heat gained by water + heat gained by aluminium
Heat gained by water = 100 × 4.186 × 30.5
= 12767.3 Joules
Heat gained by aluminium = 15 × 0.9 × 30.5
= 411.75 Joules
Heat required = 13179.05 Joules or 13.179 kJoules
Weathering and erosion<span> help shape Earth's surface.</span>
We want to solve Q = mcΔT for the liquid water; its change in temperature will tell us the amount of thermal energy that flowed out of the reaction. The specific heat, c, of water is 4.184 J/g °C.
Q = (72.0 g)(4.184 J/g °C)(100 °C - 25 °C) = 22593.6 J
Q ≈ 2.26 × 10⁴ J or 22.6 kJ (three significant figures).
Answer:
The alkyl halide is secondary
The nucleophile is a poor nucleophile
The solvent is a protic solvent
The product is racemic
Explanation:
The reaction is shown in the image attached.
Alkyl halides undergo nucleophilic substitution by two mechanisms; SN1 and SN2. The particular mechanism that applies depends on;
I) structure of the alkyl halide
ii) nature of the nucleophile
iii) nature of the solvent
Looking at the reaction under review, we can see from the structure that the alkyl halide is a secondary alkyl halide. A secondary alkyl halide may undergo substitution via SN1 or SN2 mechanism depending on the conditions of the reaction.
If the nucleophile is poor, and the solvent is protic, SN1 mechanism is favoured over SN2 mechanism. Since CH3CH2OH is a poor nucleophile and ethanol is a protic solvent, we expect the reaction to proceed via SN1 mechanism leading to the formation of a racemic product.
The organic product is also shown in the second image attached.