It’s because conductors have nearly zero resistance to the flow of electrons that go through them. This leaves the electrons free to move and current can travel with full strength.
Answer:
Most adverse health effects of radiation exposure may be grouped in two general categories:
deterministic effects (harmful tissue reactions) due in large part to the killing/ malfunction of cells following high doses; and
stochastic effects, i.e., cancer and heritable effects involving either cancer development in exposed individuals owing to mutation of somatic cells or heritable disease in their offspring owing to mutation of reproductive (germ)
Answer:
Explanation:
Solution:
- Finding large moons comparable in size to their planets result from impacts of two astro-bodies. The probability of such an event occurring is very rare.
- Even at the best luck, one moon can be made from the result of giant impact. While the probability of 6 planets having moons of comparable sizes is close to impossible.
The chemical behavior of atoms is best understood in terms of the degree to which an atom of a particular element attracts electrons, a characteristic officially known as electronegativity. When electronegativity is either very high (as in a chlorine atom) or very low (as in a sodium atom) then you have an atom which tends to either acquire or get rid of one or more electrons, and when it does so it becomes an ion. Carbon has a moderate electronegativity and therefore it is more likely to share electrons (forming covalent bonds) rather than either giving them up or acquiring them (forming ionic bonds). Nitrogen does have a relatively high electronegativity and does form ionic bonds, but in ionic compounds it is most often found in the nitrate radical, combined with 3 oxygen atoms. Nitrogen is also found in molecules that have covalent bonds, such as proteins, but it is the moderating influence of carbon that makes this happen.
I should add that inert elements such as helium do not attract electrons but neither do they give up the ones that they have; they are in a special category, and they form no bonds, neither ionic nor covalent.