Answer: 9.18 Litres
Standard Temperature and Pressure (STP). Think of this as the perfect environment where the Temp. is 0°C or 273 Kelvin and Pressure is always 1 atm. This is only true in STP.
This question uses the Ideal Gas Equation:
PV=nRT
P= 1 atm
V = ??
T = 273 K (always convert to Kelvin unless told otherwise)
n = 0.410 mol
R = 0.0821 L.atm/mol.K
What R constant to use depends on the units of the other values. (look at the attachments) The units cancel out and only Litres is left. You simply multiply the values.
The ability to attract an electron for bonding is called (option B) Electronegativity.
Explanation:
I have a dog in my dog is a girl
Answer:
Explanation:
Molar ratio for Sg : FeS = 1:8
If there are 0.3 moles for Sg
Therefore, 0.3 × 8 =2.4 moles of FeS
Mass = Moles/ Mr
Mr of FeS = 56+32=88
So mass = 2.4/88
Mass= 0.027g
Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.