The term used to describe the rapid release of bubbles, or rapid release of a gas from a liquid or a solution is called Effervescence. The bubbling of a solution is due to the escape of a gas which may be from a chemical reaction, as in fermenting liquid, or by coming out of a solution after having been under pressure, as in a carbonated drink. For example; soda, champagne among others.
<span>7.379 * 10^(-4) is measured, hence prone to error, either human error or via measuring device. In this case,
100 cm = 1 m is written in stone and is unquestionable.
The density of the gold is 19.3 g/cm^3 and could be an approximation.
The approximation is good to at least one night.</span>
Answer:
ρ = 1.08 g/cm³
Explanation:
Step 1: Given data
Mass of the substance (m): 21.112 g
Volume of the substance (V): 19.5 cm³
Step 2: Calculate the density of the substance
The density (ρ) of a substance is equal to its mass divided by its volume.
ρ = m / V
ρ = 21.112 g / 19.5 cm³
ρ = 1.08 g/cm³
The density of the substance is 1.08 g/cm³.
Answer:
Increasing atomic number - True
Explanation:
The modern table is based on Mendeleev’s table, except the modern table arranges the elements by increasing atomic number instead of atomic mass.
The Atomic number is the number of protons in an atom, and this number is unique for each element. For example, Hydrogen has an atomic number of 1, Calcium has an atomic number of 20.
In the modern periodic table the elements are further arranged into:
- rows, called periods, in order of increasing atomic number. Elements in the same periods have the same number of shells.
- vertical columns, called groups, where the elements have similar properties. Elements in the same group has the same number of valency (outermost number of electrons)
<span>The superscripts in an electron configuration represents the number of electrons and protons in an element. </span>