By Considering the vertical distance and both vertical and horizontal final velocity, the time t = 0.45 s and Velocity V = 6.7 m/s
Given that a Veggie meatball with v = 5.0 m/s rolls off a 1.0 m high table.
Height h = 1.0 m
As the ball rolls off the table, it will be fallen under gravity. Where
g = 9.8 m/
Initial vertical velocity
= 0
Initial horizontal velocity
= 5 m/s
Considering the vertical distance, the formula to use to calculate the time will be;
h = ut + 1/2g
1 = 0 + 1/2 x 9.8
1 = 4.9
= 1/4.9
t = 
t = 0.45 seconds
It takes 0.45 seconds to hit the floor if no one sneezes.
To calculate its velocity when it hits the floor, we will need to calculate for both vertical and horizontal final velocity and find the resultant velocity of the two.
Vertical component
=
+ gt
= 0 + 9.8(0.45)
= 4.41 m/s
Horizontal component
=
+ at
but a = 0
= 5 m/s
Final velocity V = 
V = 6.67 m/s
Therefore, it will hit the floor at a velocity of 6.7 m/s
Learn more here: brainly.com/question/5063616
The answer is true because A current carrying wire is surrounded by magnetic field
The concept that we need here to give a proper solution is mutual inductance.
The mutual inductance is given by the expression

Where,
I = current
N = Number of turns
Flux through the solenoid.
Part A) Then we have in our values that,



Replacing in the equation,


Part B) Here is required the Flux, then using the same expression we have that

We conserve the same value for the Inductance but now we have a current of 2.6, then


Therefore the flux in Solenoid 1 is 
Solution:
Make an Observation - An indoor plant in a dark room withers faster than the same plant in a room with ample sunlight.
Ask a question- Why do certain indoor plants die faster based on where they are placed in the house?
State a hypothesis- Sunlight is probably essential for plants to grow and live.
Run an experiment- Get two potted plants. Cover one with black paper. Place both plants outside in sunlight. See what happens to each plant after one week.
Analyze the results-The plant in the pot with black paper withered. The other plant was healthy.
Communicate the results to others - Plants need sunlight to make food so they can live.
(a) 154.5 N
Let's divide the motion of the sprinter in two parts:
- In the first part, he starts with velocity u = 0 and accelerates with constant acceleration
for a total time
During this part of the motion, he covers a distance equal to
, until he finally reaches a velocity of
. We can use the following suvat equation:

which reduces to
(1)
since u = 0.
- In the second part, he continues with constant speed
, covering a distance of
in a time
. This part of the motion is a uniform motion, so we can use the equation
(2)
We also know that the total time is 10.0 s, so

Therefore substituting into the 2nd equation

From eq.(1) we find
(3)
And substituting into (2)

Solving for t,

So from (3) we find the acceleration in the first phase:
And so the average force exerted on the sprinter is

b) 14.5 m/s
The speed of the sprinter remains constant during the last 55 m of motion, so we can just use the suvat equation

where we have
u = 0
is the acceleration
is the time of the first part
Solving the equation,
