To model time-variant data, one must create a new entity in an m:n relationship with the original entity, is a False statement.
- Like the majority of software engineering initiatives, the ER process begins with gathering user requirements. What information must be retained, what questions must be answered, and what business rules must be implemented (For instance, if the manager column in the DEPARTMENT table is the only column, we have simply committed to having one manager for each department.)
- The end result of the E-R modeling procedure is an E-R diagram that can be roughly mechanically transformed into a set of tables. Tables will represent both entities and relationships; entity tables frequently have a single primary key, but the primary key for relationship tables nearly invariably involves numerous characteristics.
To know more about entity AND relationship visit : brainly.com/question/28232864
#SPJ4
A) Agreed.
<span>b) Value agreed but units should be W (watts). </span>
<span>c) Here's one method... </span>
<span>15 miles = 24140 m </span>
<span>1 gallon of gasoline contains 1.4×10⁸ J. </span>
<span>So moving a distance of 24140m requires gasoline containing 1.4×10⁸ J </span>
<span>Therefore moving a distance of 1m requires gasoline containing 1.4×10⁸/24140 = 5800 J </span>
<span>Overcoming rolling resitance for 1m requires (useful) work = force x distance = 1000x1 = 1000J </span>
<span>So 5800J (in the gasoline) provides 1000J (overcoming rolling resistance) of useful work for each metre moved. </span>
<span>Efficiency = useful work/total energy supplied </span>
<span>= 1000/5800 </span>
<span>= 0.17 (=17%) </span>
Answer:
a

b

Explanation:
From the question we are told that
The pressure of the water in the pipe is
The speed of the water is 
The original area of the pipe is
The new area of the pipe is
Generally the continuity equation is mathematically represented as

Here
is the new velocity
So

=> 
=> 
=> 
=> 
Generally given that the height of the original pipe and the narrower pipe are the same , then we will b making use of the Bernoulli's equation for constant height to calculate the pressure
This is mathematically represented as

Here
is the density of water with value
![P_2 = P_1 + \frac{1}{2} * \rho [ v_1^2 - v_2^2 ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20P_1%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Crho%20%5B%20v_1%5E2%20-%20v_2%5E2%20%5D)
=> ![P_2 = 110 *10^{3} + \frac{1}{2} * 1000 * [ 1.4 ^2 - 5.6 ^2 ]](https://tex.z-dn.net/?f=P_2%20%3D%20%20110%20%2A10%5E%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20%201000%20%2A%20%20%5B%201.4%20%5E2%20-%205.6%20%5E2%20%5D)
=> 
I believe the answer is 3). The cell wall provides protection, it doesn’t control movements of materials in and out of the cell.
Answer:
I am joker if you are mad x_________-..............,,,,,,........ €£