1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kupik [55]
3 years ago
9

How fast is a wave traveling if it has a wavelength of 7 meters and a frequency of 11 Hz?

Physics
1 answer:
pashok25 [27]3 years ago
7 0

Answer:

\huge{ \boxed{ \bold{ \sf{77 \: m/s}}}}

☯ Question :

  • How fast is a wave travelling if it has a wavelength of 7 meters and a frequency of 11 Hz?

☯ \underbrace{ \sf{Required \: Answer  :  }}

☥ Given :

  • Wavelength ( λ ) = 7 meters
  • Frequency ( f ) = 11 Hz

☥ To find :

  • Speed of sound ( v ) = ?

☄ We know ,

\boxed{ \sf{v = f \times λ}}

where ,

  • v = speed of sound
  • f = frequency
  • λ = wavelength

Now, substitute the values and solve for v.

➺ \sf{v = 11 \times 7}

➺ \boxed{ \sf{v = 77 \: m/s}}

-------------------------------------------------------------------

✑ Additional Info :

  • Frequency : The number of complete vibrations made by a particle of a body in one second is called it's frequency. It is denoted by the letter f . The SI unit of frequency is hertz ( Hz ).

  • Wavelength : The distance between two consecutive compressions or rarefactions of a sound wave is called wavelength of that wave. It is denoted by λ ( lambda ) and it's SI unit is m.

  • Speed of a sound wave : The distance covered by a sound wave in one second is called speed of sound wave. It depends on the product of wavelength and frequency of the wave.

Hope I helped!

Have a wonderful time! ツ

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

You might be interested in
The trade winds are tropical winds that blow toward the Equator. Choose the statement that best explains why the trade winds blo
AveGali [126]

The best and most correct answer among the choices provided by your question is the fourth option or letter D. Trade winds blow towards the equator because t<span>he Equator receives the most heat energy.

</span>The surface air that flows from these subtropical high-pressure belts toward the Equator is deflected toward the west in both hemispheres by the Coriolis effect. These winds blow<span> predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.

I hope my answer has come to your help. Thank you for posting your question here in Brainly.

</span>

3 0
3 years ago
Solve for the length of the inclined plane if the angle equals 19.45 degrees.
mel-nik [20]

The length of the inclined plane is approximately 12 ft

The situation forms a right angle triangle.

<h3>Right triangle</h3>

Right triangle have one of its angle as 90 degrees.

Therefore,

The length of the inclined plane is the hypotenuse of the triangle. The length of the inclined plane can be found using trigonometric ratios.

height = 4 ft

angle(∅) = 19.45°

sin 19.45 = 4 / h

h = 4 / 0.33298412235

h = 12.0125847796

h = 12 ft

Therefore, the length of the inclined plane is approximately 12 ft

learn more on inclined plane:brainly.com/question/14163589?referrer=searchResults

5 0
2 years ago
A box slides down a frictionless incline, gaining speed. The work done by the normal force n is _______.
jeka57 [31]

The work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.

<h3>What is normal force?</h3>

The force of contact is called the normal force. When the two surfaces are in contact with each other, then the normal force acts.

This force is applied by the solid bodies on each other in order to prevent the passing through each other.

A box slides down a frictionless incline, gaining speed. For this box, the value of work done by normal force has to be found out. Let's analyze the given condition.

  • The body is gaining the speed, which means there is a change in kinetic energy.
  • The change in kinetic energy is equal to the work done.
  • The friction force is the product of coefficient of the friction and normal force.
  • The friction force for the given case is zero. Thus, the normal force must be equal to the zero.

Thus, the work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.

Learn more about the normal force here;

brainly.com/question/10941832

7 0
2 years ago
Read 2 more answers
A ball is tossed with enough speed straight up so that it is in the air several seconds. (a) What is the velocity of the ball wh
irina1246 [14]

(a) Zero

When the ball reaches its highest point, the direction of motion of the ball reverses (from upward to downward). This means that the velocity is changing sign: this also means that at that moment, the velocity must be zero.

This can be also understood in terms of conservation of energy: when the ball is tossed up, initially it has kinetic energy

K=\frac{1}{2}mv^2

where m is the ball's mass and v is the initial speed. As it goes up, this kinetic energy is converted into potential energy, and when the ball reaches the highest point, all the kinetic energy has been converted into potential energy:

U=mgh

where g is the gravitational acceleration and h is the height of the ball at highest point. At that point, therefore, the potential energy is maximum, while the kinetic energy is zero, and so the velocity is also zero.

(b) 9.8 m/s upward

We can find the velocity of the ball 1 s before reaching its highest point by using the equation:

a=\frac{v-u}{t}

where

a = g = -9.8 m/s^2 is the acceleration due to gravity, which is negative since it points downward

v = 0 is the final velocity (at the highest point)

u is the initial velocity

t = 1 s is the time interval

Solving for u, we find

u=v-at = 0 -(-9.8 m/s^2)(1 s)= +9.8 m/s

and the positive sign means it points upward.

(c) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where

v = 0 is the final velocity (at the highest point)

u = 9.8 m/s is the initial velocity

Substituting, we find

\Delta v = 0 - (+9.8 m/s)=-9.8 m/s

(d) 9.8 m/s downward

We can find the velocity of the ball 1 s after reaching its highest point by using again the equation:

a=\frac{v-u}{t}

where this time we have

a = g = -9.8 m/s^2 is the acceleration due to gravity, still negative

v  is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

t = 1 s is the time interval

Solving for v, we find

v = u+at = 0 +(-9.8 m/s^2)(1 s)= -9.8 m/s

and the negative sign means it points downward.

(e) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where here we have

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

Substituting, we find

\Delta v = -9.8 m/s - 0=-9.8 m/s

(f) -19.6 m/s

The change in velocity during the overall 2-s interval is given by

\Delta v = v -u

where in this case we have:

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = +9.8 m/s is the initial velocity (1 s before reaching the highest point)

Substituting, we find

\Delta v = -9.8 m/s - (+9.8 m/s)=-19.6 m/s

(g) -9.8 m/s^2

There is always one force acting on the ball during the motion: the force of gravity, which is given by

F=mg

where

m is the mass of the ball

g = -9.8 m/s^2 is the acceleration due to gravity

According to Newton's second law, the resultant of the forces acting on the body is equal to the product of mass and acceleration (a), so

mg = ma

which means that the acceleration is

a= g = -9.8 m/s^2

and the negative sign means it points downward.

7 0
3 years ago
The basic barometer can be used to measure the height of a building. If the barometric readings at the top and at the bottom of
LekaFEV [45]

Answer:

   (h₁-h₂) = 2.30 10² m

Explanation:

The pressure depends on the height with the formula

          P = P_atm + rho g h

Let's apply this expression for the building

         P₁ = P_atm + rho_air g h₁

        P₂ = P_atm + rho_air g h₂

Subtract

        P₁ - P₂ = roh_air g (h₁ –h₂)

         

         

The measured pressure is in mm Hg to take this unit to units of pressure must be multiplied by the density of mercury and the acceleration of gravity

           P₁- P₂ = rho_Hg g (h₁-h₂) _Hg

         rho_Hg g (h₁-h₂) _Hg = roh_air g (h₁ –h₂)

          (h₁ –h₂) = rho_Hg / rho_air (h₁-h₂) _ Hg

Let's calculate

         (h₁-h₂) = 13600 / 1.18 (695-675)

         (h₁-h₂) = 2.30 10⁵ mm

Let's reduce to meter

         (h₁-h₂) = 2.30 10⁵ mm (1 m / 10³ mm)

         (h₁-h₂) = 2.30 10² m

4 0
3 years ago
Other questions:
  • How are calculation for velocity and speed different
    6·1 answer
  • Which term is a scalar quantity?
    14·2 answers
  • When a force of 15 newtons is applied to a stationary chair, it starts moving. What can you say about the frictional force betwe
    15·1 answer
  • I'm looking for the answers for 4-6 and how to do them. I have some answers already but I'm very unsure of them. Thank you!
    10·1 answer
  • The __________ eventually becomes the muscles, skeleton, circulatory system, and other internal organs.
    11·1 answer
  • What will happen if a car experiences a 300 N force to the right from the engine and a separate 150 N force due to friction and
    7·1 answer
  • Scientists have designed solar cells to trap solar energy and convert it to _____ energy.
    15·2 answers
  • A person of 70 kg standing on an un-deformable horizontal surface. She bends her knees and jumps up from rest, achieving a launc
    8·1 answer
  • Which element in the 18th column of the periodic table (shown below) has the largest radius?
    7·1 answer
  • A 9-kg body has three times the kinetic energy of an 4-kg body. Calculate the ratio of the speeds of these bodies.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!