Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
D.
The reading between 7N and 8N would have to be 7.5N. Answers A and B are much to small and answer C is way to big.
Answer:
The answer is "use manual motherboard".
Explanation:
The motherboard is also known as the mainboard, it an electronic circuit board, that can connect with the CPU, RAM, and other networking equipment parts. It is also is known as a chipset, that differ widely in style, context, power source, height and performance (Form Factor).
All the data of the computer is stored memory, which checks into the motherboard, that the SATA port which you are connected to is still going to run at 6.0Gbps or not.
Answer:

Explanation:
The relationship between the linear distance covered by an object and its angular displacement is given by the following formula:
s = rθ
where,
s = distance traveled on road = ?
r radius of tires = diameter/2 = 2.2 m/2 = 1.1 m
θ = angular displacement = (60 rev)(2π rad/1 rev) = 377 rad
Therefore,

Answer:

Explanation:
is the angle between the velocity and the magnetic field. So, the magnetic force on the proton is:

A charged particle describes a semicircle in a uniform magnetic field. Therefore, applying Newton's second law to uniform circular motion:

is the centripetal force and is defined as:

Here
is the proton's speed and
is the radius of the circular motion. Replacing this in (1) and solving for r:

Recall that 1 J is equal to
, so:

We can calculate
from the kinetic energy of the proton:

Finally, we calculate the radius of the proton path:
