Answer: The pH of the solution is 11.2
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml
moles of
=
(1g=1000mg)
Now put all the given values in the formula of molality, we get


pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)

According to stoichiometry,
1 mole of
gives 2 mole of
Thus 0.0298 moles of
gives =
moles of
Putting in the values:
![pOH=-\log[0.0596]=2.82](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5B0.0596%5D%3D2.82)



Thus the pH of the solution is 11.2
Answer:
013 g/mol is the molar mass of N2O.
The molar mass of the unknown gas is 184.96 g/mol
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>How to determine the molar mass of the unknown gas </h3>
The following data were obtained from the question:
- Rate of unknown gas (R₁) = R
- Rate of CH₄ (R₂) = 3.4R
- Molar mass of CH₄ (M₂) = 16 g/mol
- Molar mass of unknown gas (M₁) =?
The molar mass of the unknown gas can be obtained as follow:
R₁/R₂ = √(M₂/M₁)
R / 3.4R = √(16 / M₁)
1 / 3.4 = √(16 / M₁)
Square both side
(1 / 3.4)² = 16 / M₁
Cross multiply
(1 / 3.4)² × M₁ = 16
Divide both side by (1 / 3.4)²
M₁ = 16 / (1 / 3.4)²
M₁ = 184.96 g/mol
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1