Water's extensive capability to dissolve a variety of molecules has earned it the designation of “universal solvent,” and it is this ability that makes water such an invaluable life-sustaining force. On a biological level, water's role as a solvent helps cells transport and use substances like oxygen or nutrients.
Answer:
Space junk is travelling so fast that a collision with an astronaut or a spacecraft could be disastrous.
Explanation:
Space junk orbits the Earth at speeds of about 28 000 km/h.
That's so fast that even an orbiting fleck of paint has enough kinetic energy to cause impact craters on the surface of a spacecraft. They are even more dangerous to an astronaut on a space walk.
Much of the space debris is larger and more dangerous than a fleck of paint.
One rough estimate of the amount of space debris is
<em> </em><u>Size</u><em> </em> <u>Number of objects</u>
< 1 cm 200 000 000
1 cm to 10 cm 700 000
> 10 cm 30 000
Satellites, etc. 18 000
The chances of collision are small, but any collision can be disastrous.
The density of He is 1.79 x 10⁻⁴ g/mL
In other words in 1 mL there's 1.79 x 10⁻⁴ g of He.
To fill a volume of 6.3 L the mass of He required
= 1.79 x 10⁻⁴ g/mL * 6300 mL
= 11 277 * 10⁻⁴ g
Therefore mass of He required = 1.1277 g of He
Answer:
21.02moles of KBr
Explanation:
Parameters given:
Number of moles BaBr₂ = 10.51moles
Complete reaction equation:
BaBr₂ + K₂SO₄ → KBr + BaSO₄
Upon inspecting the given equation, we find out that the atoms are not balanced on both sides of the equation:
The balanced equation is:
BaBr₂ + K₂SO₄ → 2KBr + BaSO₄
From the equation:
1 mole of BaBr₂ produces 2 moles of KBr
∴ 10.51 moles of BaBr₂ will yield (2 x 10.51) moles = 21.02moles of KBr