Answer:
The answer to your question is:
a) t1 = 2.99 s ≈ 3 s
b) vf = 39.43 m/s
Explanation:
Data
vo = 10 m/s
h = 74 m
g = 9.81 m/s
t = ? time to reach the ground
vf = ? final speed
a) h = vot + (1/2)gt²
74 = 10t + (1/2)9.81t²
4.9t² + 10t -74 = 0 solve by using quadratic formula
t = (-b ± √ (b² -4ac) / 2a
t = (-10 ± √ (10² -4(4.9(-74) / 2(4.9)
t = (-10 ± √ 1550.4 ) / 9.81
t1 = (-10 + √ 1550.4 ) / 9.81 t2 = (-10 - √ 1550.4 ) / 9.81
t1 = (-10 ± 39.38 ) / 9.81 t2 = (-10 - 39.38) / 9.81
t1 = 2.99 s ≈ 3 s t2 = is negative then is wrong there are
no negative times.
b) Formula vf = vo + gt
vf = 10 + (9.81)(3)
vf = 10 + 29.43
vf = 39.43 m/s
From the given equation we can deduce what changes will occur if the frequency of the sound is doubled
V= f (λ)
Speed = frequency. Wavelength
When the frequency is doubled, speed will not change. Because speed depends on factors like temperature, air pressure, density of the gas. Since all these factors are unchanged thus speed will remain unchanged
Frequency is the number of waves produced per second. Frequency and wavelength are inversely proportional .Thus, if the frequency is doubled the wavelength would be halved.
Answer:
1. 0.574 kJ/kg
2. 315.7 MW
Explanation:
1. The mechanical energy per unit mass of the river is given by:


Where:
Ek is the kinetic energy
Ep is the potential energy
v is the speed of the river = 3 m/s
g is the gravity = 9.81 m/s²
h is the height = 58 m

Hence, the total mechanical energy of the river is 0.574 kJ/kg.
2. The power generation potential on the river is:

Therefore, the power generation potential of the entire river is 315.7 MW.
I hope it helps you!