Charles law gives the relationship between volume and temperature of gas.
It states that at constant pressure volume is directly proportional to temperature
Therefore
V/ T = k
Where V - volume T - temperature in kelvin and k - constant
V1/T1 = V2/T2
Parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
Substituting the values in the equation
267 L/ 480 K = V / 750 K
V = 417 L
Final volume is 417 L
Answer:
4.33 L
Explanation:
Step 1: Given data
Initial volume of the balloon (V₁): 3.00 L
Initial pressure of the balloon (P₁): 765 torr
Final volume of the balloon (V₂): ?
Final pressure of the balloon (P₂): 530 torr
Step 2: Calculate the final volume of the balloon
If we consider Helium to behave as an ideal gas, we can calculate the final volume of the balloon using Boyle's law.

Answer:
18,01528
Explanation:
<h3>
Answer:</h3>
0.0157 g Au
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.113 g Au
<u>Step 2: Identify Conversions</u>
Molar Mass of Au - 197.87 g/mol
<u>Step 3: Convert</u>
<u />
= 0.015733 g Au
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.015733 g Au ≈ 0.0157 g Au
H₂CO₃ ⇔ HCO₃⁻ + H⁺
I 0.160 0 0
C -x +x +x
E 0.160-x +x +x
Ka1 = [HCO₃⁻][H⁺] / [H₂CO₃]
4.3 x 10⁻⁷ = x² / (0.160-x) (x is neglected in 0.160-x = 0.160)
x² = 6.88 x 10⁻⁸
x = 2.62 x 10⁻⁴
HCO₃⁻ ⇔ CO₃⁻² + H⁺
I 2.62 x 10⁻⁴ 0 2.62 x 10⁻⁴
C -x +x +x
E 2.62 x 10⁻⁴ - x +x 2.62 x 10⁻⁴ + x
Ka2 = [CO₃⁻²][H⁺] / [HCO₃⁻]
5.6 x 10⁻¹¹ = x(2.62 x 10⁻⁴ + x) / (2.62 x 10⁻⁴ - x)
x = 5.6 x 10⁻¹¹
Thus,
[H₂CO₃] = 0.160 - (2.62 x 10⁻⁴) = 0.16 M
[HCO₃⁻] = 2.62 x 10⁻⁴ - ( 5.6 x 10⁻¹¹) = 2.6 x 10⁻⁴ M
[CO₃⁻²] = 5.6 x 10⁻¹¹ M
[H₃O⁺] = 2.62 x 10⁻⁴ + 5.6 x 10⁻¹¹ = 2.6 x 10⁻⁴ M
[OH⁻] = 3.8 x 10⁻¹¹