That’s hard lol but it’s angle 5 to the power of 7.t!$/&:
One method of separation of homegeneous mixtures is called distillation and its based on the various boiling points of the component of mixture.
In other words the answer is letter D
Answer:
The discriminant of f is 92, and it has no real zeros
Step-by-step explanation:
The discriminant of a quadratic is
, where the quadratic is in the form
. The discriminant of this one is therefore:

Since the square root of a negative number is imaginary, this quadratic has no real number zeros. Hope this helps!
These are two questions and two answers.
Question 1) Which of the following polar equations is equivalent to the parametric equations below?
<span>
x=t²
y=2t</span>
Answer: option <span>A.) r = 4cot(theta)csc(theta)
</span>
Explanation:
1) Polar coordinates ⇒ x = r cosθ and y = r sinθ
2) replace x and y in the parametric equations:
r cosθ = t²
r sinθ = 2t
3) work r sinθ = 2t
r sinθ/2 = t
(r sinθ / 2)² = t²
4) equal both expressions for t²
r cos θ = (r sin θ / 2 )²
5) simplify
r cos θ = r² (sin θ)² / 4
4 = r (sinθ)² / cos θ
r = 4 cosθ / (sinθ)²
r = 4 cot θ csc θ ↔ which is the option A.
Question 2) Which polar equation is equivalent to the parametric equations below?
<span>
x=sin(theta)cos(theta)+cos(theta)
y=sin^2(theta)+sin(theta)</span>
Answer: option B) r = sinθ + 1
Explanation:
1) Polar coordinates ⇒ x = r cosθ, and y = r sinθ
2) replace x and y in the parametric equations:
a) r cosθ = sin(θ)cos(θ)+cos(θ)
<span>
b) r sinθ =sin²(θ)+sin(θ)</span>
3) work both equations
a) r cosθ = sin(θ)cos(θ)+cos(θ) ⇒ r cosθ = cosθ [ sin θ + 1] ⇒ r = sinθ + 1
<span>
b) r sinθ =sin²(θ)+sin(θ) ⇒ r sinθ = sinθ [sinθ + 1] ⇒ r = sinθ + 1
</span><span>
</span><span>
</span>Therefore, the answer is r = sinθ + 1 which is the option B.
1992.1875
1500/64000= 0.0234375
0.0234375 x 85000=1992.1875