Answer:
Boiling water breaks intermolecular attractions and electrolysis breaks covalent bonds.
Explanation:
When water boils, hydrogen bonds are broken between adjacent water molecules. The hydrogen bond is an intermolecular bond between adjacent oxygen and hydrogen atoms of water molecules.
During electrolysis, water dissociates in the presence of electric current. Here, ions are formed in the process. Therefore, covalent bonds are broken here.
The reaction of acid, assuming HCl and calcium carbonate always produces a gas. The reaction is as follows:
2 HCl + CaCO3 --> CaCl2 + H2CO3
H2CO3, carbonic acid, is a weak acid that is unstable in water solutions at high concentrations. As such, it decomposes:
H2CO3 --> H2O + CO2
Then,
2 HCl + CaCO3 --> CaCl2 + H2O + CO2
The total ionic equation looks as follows:
2H+(aq) + 2 Cl-(aq) + CaCO3(s) --> Ca+2(aq) + 2 Cl-(aq) + H2O(l) + CO2(g)
Clearly, Cl- is a spectator ion as it is unchanged in the reaction. The net ionic reaction looks as follows:
2 H+(aq) + CaCO3(s) --> Ca+2(aq) + H2O(l) + CO2(g)
Answer:
1s2 2s2 2p6 3s2 3p6 4s2 3d5
Explanation:
According to the Aufbau principle, electrons are filled in orbitals in order of increasing energy. The energy of orbitals in the electronic configuration of manganese increases from left to right, hence 3d orbital is much greater in energy than a 3p orbital.
The arrangement of orbitals in order of increasing energy is shown in the answer above.