M)³ / 6 = 4.2e9 m³
<span>so its mass is </span>
<span>M = 3300kg/m³ * 4.2e9m³ = 1.4e13 kg </span>
<span>and so its KE at 16 km/s = 16000 m/s is </span>
<span>KE = ½ * 1.4e13kg * (16000m/s)² = 1.8e21 J
</span># of bombs N = 1.8e21J / 4.0e16J/bomb = 44 234 bombs
<span>give or take.
</span>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
Answer:
4 A
Explanation:
The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

where
V is the voltage
R is the resistance
I is the current
The equation can also be rewritten as

from which we see that the current is inversely proportional to the resistance, R.
In this problem, the initial current is I = 8 A. Then the resistance is doubled:
R ' = 2R
So the new current is

so the current is halved.
Acceleration = (velocity final-velocity initial)/ time
where
velocity final = 135 km/hr x 1 hr /3600 s x 1000m/1km
= 37.5 m/s
velocity initial = 35 km/hr x 1hr /3600 s x 1000 m/1 km
= 9.72 m/s
a) acceleration = 2.646 m/s^2
b) acceleration in g units = (2.646m/s^2)/(9.8m/s^2)
= 0.27 units
Answer:
the correct one is C
Explanation:
For this exercise we must use the work definition
W = F. s
Where the bold characters indicate vectors and the point is the scalar producer
W = F s cos θ
Where θ is the angles between force and displacement.
Let us support this in our case. The cable creates an upward tension and with the elevator going down the angle between them is 180º so the work of the cable on the elevator is negative.
The evade has a downward force, its weight so the force goes down and the displacement goes down, as both are in the same direction the work is positive
When examining the statements the correct one is C