Explanation:
<h2>
<em>The </em><em>S. </em><em>I. </em><em> </em><em>unit </em><em>of </em><em>momentum </em><em>is </em><em>Kg. </em><em>m/</em><em>s</em><em>e</em><em>c</em></h2>
<em>hope </em><em>it </em><em>helps </em><em>you </em>
Meselson and Stahl
<u>Explanation:</u>
<u></u>
The classic experiment that supported the semiconservative model of dna replication was performed by Matthew Meselson and Franklin W. Stahl. In this model, the two strands of DNA unwind from each other, and each acts as a template for synthesis of a new, complementary strand. This results in two DNA molecules with one original strand and one new strand. They used E. coli bacteria as a model system.
Answer:
Explanation:
Given that,
Mass m = 6.64×10^-27kg
Charge q = 3.2×10^-19C
Potential difference V =2.45×10^6V
Magnetic field B =1.6T
The force in a magnetic field is given as Force = q•(V×B)
Since V and B are perpendicular i.e 90°
Force =q•V•BSin90
F=q•V•B
So we need to find the velocity
Then, K•E is equal to work done by charge I.e K•E=U
K•E =½mV²
K•E =½ ×6.64×10^-27 V²
K•E = 3.32×10^-27 V²
U = q•V
U = 3.2×10^-19 × 2.45×10^6
U =7.84×10^-13
Then, K•E = U
3.32×10^-27V² = 7.84×10^-13
V² = 7.84×10^-13 / 3.32×10^-27
V² = 2.36×10^14
V=√2.36×10^14
V = 1.537×10^7 m/s
So, applying this to force in magnetic field
F=q•V•B
F= 3.2×10^-19 × 1.537×10^7 ×1.6
F = 7.87×10^-12 N
Answer:It shows the size of the range of the moisture contents at which the soil remains plastic. In general, the plasticity index depends only on the amount of clay present. It indicates the fineness of the soil and its capacity to change shape without altering its volume.
1 kg=100000 cg
2 kg=200000 cq
If mass is the quantity then kg is the S.I
2 kg=2kg