Two non-polar molecules are most likely to interact by
induced dipole-induced dipole interaction.
Non-polar substances do not have a permanently established charge distribution due to similar electron affinities of the atoms that are present. Moreover, due to the absence of a polar hydrogen, they cannot exhibit hydrogen bonding. They interact with one another by induced dipole-induced dipole interactions which arise from the molecules of the substances coming into close vicinity of one another.
Answer:
1. an educated guess
2. data
3. what changes in experiment
4. what stays the same in both groups
5. the group where nothing changes, normal
6. group with independent variable, what's being tested
Answer:
Energy was released
Explanation:
Decrease in temperature means less energy, but the energy had to have been transferred because energy can't be destroyed or created. So if the temp. went down, energy must have been lost. (If it had been absorbed, the temp. would have gone up)
Answer:
The correct answer is - option D. the boiling point of solution A will be lower than the boiling point of solution B
Explanation:
Colligative properties such as a decrease in the freezing point of the solution, increase in the boiling point of substance, decrease in Lowering of vapor pressure, and other properties depend upon the number of molecules only.
In the given solution the equal amount of two solutions are mixed that is 50 grams however due to the difference in the molecular mass so the atoms present in both solution A and B will be different. It is known that the number of atoms of a substance is inversely proportional to the molecular mass of the particular substance.
As it is given that Solution B has a low molecular mass which means it has a high number of atoms that means its boiling point will be higher than solution A.
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ