Answer:
The mass fraction of ferric oxide in the original sample :
Explanation:
Mass of the mixture = 3.110 g
Mass of
Mass of
After heating the mixture it allowed to react with hydrogen gas in which all the ferric oxide reacted to form metallic iron and water vapors where as aluminum oxide did not react.
Mass of mixture left after all the ferric oxide has reacted = 2.387 g
Mass of mixture left after all the ferric oxide has reacted = y
The mass fraction of ferric oxide in the original sample :
Answer:
The products are Calcium oxide and Carbon dioxide.
Explanation:
When calcium carbonate is heated, thermal decomposition occurs.
Calcium calcium → Calcium oxide + Carbon dioxide
Answer:
a) C6H5COOH + H2O ↔ H3O+ + C6H5COO-
b) [ H3O+ ] = 2.517 E-3 M
c) pH = 2.599
Explanation:
a) balanced equation:
C6H5COOH + H2O ↔ H3O+ + C6H5COO-
⇒ Ka = ( [ H3O+ ] * [ C6H5COO- ] ) / [ C6H5COOH ] = 6.5 E-5
mass balance:
0.10 m = [ C6H5COO- ] + [ C6H5COOH ].....(1)
charge balance:
[ H3O+ ] = [ C6H5COO- ] + [ OH- ] .......[ OH- ] : comes from water, it's not significant
⇒ [ H3O+ ] = [ C6H5COO- ] .........(2)
b) (2) in (1):
⇒ 0.10 M = [ H3O+ ] + [ C6H5COOH ]
⇒ [ C6H5COOH ] = 0.10 - [ H3O+ ]
⇒ Ka = [ H3O+ ]² / ( 0.1 - [ H3O+ ] ) = 6.5 E-5
⇒ [ H3O+ ]² + 6.5 E-5 [ H3O+ ] - 6.5 E-6 = 0
⇒ [ H3O+ ] = 2.517 E-3 M
c) pH = - log [ H3O+ ]
⇒ pH = - Log ( 2.517 E-3 )
⇒ pH = 2.599