Answer:
E = 15×10⁻²⁹ J
Explanation:
Given data:
Frequency of photon = 2.2× 10⁷ Hz
Energy of photon = ?
Solution:
Formula:
E = h.f
h = 6.63×10⁻³⁴ Js
by putting values,
E = 6.63×10⁻³⁴ Js × 2.2× 10⁷ s⁻¹
E = 14.586 ×10⁻²⁹ J
E = 15×10⁻²⁹ J
The energy of photon is 15×10⁻²⁹ J.
The question is incomplete, the complete question is;
Suna passes an electric current through a sample of clear, colorless, and odorless liquid. As the experiment continues, bubbles form, and the volume of liquid decreases. Suna collects samples of two colorless, odorless gases that bubble out of the liquid. One of the gases burns. Neither the original liquid nor the other gas burns. Which is the best explanation of her results? The electric current changed some of the sample to gas even though the sample was not breaking down. Therefore, the original liquid is a compound. The electric current released a gas that was odorless and colorless, like the original sample. Therefore, the original liquid is an element. The sample was broken down by the electric current and formed a new substance that could burn. Therefore, the original liquid is a compound. The sample lost some of its volume, but the gas still had the same chemical makeup as the original sample. Therefore, the original liquid is an element.
Answer:
The sample was broken down by the electric current and formed a new substance that could burn. Therefore, the original liquid is a compound.
Explanation:
When electric current is passed through a compound, the compound may become broken down to release its constituents. We refer to this phenomenon as electrolysis. We can now say that the substance has been 'decomposed' electrolytically.
Since the original sample was decomposed to yield a gas that could burn and one that couldn't burn even though the original sample couldn't burn, then the original sample is a compound.
Answer: The approximate pressure of the gas after it is heated to 278 K is 0.468 atm.
Explanation:
Given:
= 178 K,
= 0.3 atm
= 278 K,
= ?
According to Gay Lussac law, at constant volume the pressure of a gas is directly proportional to the temperature.
Formula used to calculate the pressure is as follows.

Substitute the values into above formula is as follows.

Thus, we can conclude that the approximate pressure of the gas after it is heated to 278 K is 0.468 atm.
We know the formula of the density:
ρ =

;
So the mass will be equal to:
m = ρ * V = 2.70 * 21.3 = 57,51 g =
57510 mg of substance.
So the answer is 57510.
If temperature were to double the pressure would likewise double. Increased temperature would increase the energy of the molecules and the number of collisions would also increase causing the increase in pressure.