In Euclidean geometry parallel lines never intersect. But in non-Euclidean geometry parallel lines can either curve away from each other, or curve towards each other. Example : the black lines that wrap themselves around the basketball.
Answer: B ) non-Euclidean
Answer:
Lever =>
Pulley => G = M x n (gravitational acceleration)
Wheel and axle => M.A = Radius of the wheel/radius of the axle = R/r
Inclined plane => It can be divided into two components: Fi = Fg * sinθ - parallel to inclined plane. Fn = Fg * cosθ - perpendicular one.
Answer:
Explanation:
T = 2π
(T / 2π)² = L/g
g = 4π²L/T²
g = 4π²(0.75000)/(1.7357)²
g = 9.82814766...
g = 9.8281 m/s²
Answer:
Explanation:
The spring is stretched by .5 m and then released that means its amplitude of oscillation A is 0.5 m .
A = 0.5 m
After the release at one extreme point , the mass comes to rest again at another extreme point after half the time period ie
T / 2 = .3 s
T = 0.6 s
Angular velocity
ω =
ω =
ω = 10.45
Maximum velocity = ω A
ω and A are angular velocity and amplitude of oscillation.
Maximum velocity = 10.45 x .5
= 5.23 m /s
Answer:
Explanation:
α = (ωf - ωi)/t
acceleration phase
ωf = 132 rev/min (2π rad/rev / 60 s/min) = 4.4π rad/s
α₁ = (4.4π - 0)/20 = 0.22π rad/s²
α₂ = (0 - 4.4π)/40 = - 0.11π rad/s²
α₁/α₂ = 0.22π/- 0.11π = -2