Bernoulli principle
According to Bernoulli's principle, this faster moving air on the top has a lower pressure than the non-moving air on the bottom. With a greater pressure on the bottom of the paper there is also a greater force pushing up.
Heat lost or gained, H = mc(θ₂ - θ₁)
Where m = mass, c = Specific heat capacity, θ₂= final temperature, θ₁ = initial temperature
m = 200g, c = 0.444 J/g°C, θ₁ = 22 °C (Since it was cooled).
H = 6.9 kj = 6.9 *1000J = 6900 J
6900 = 200*0.444* (θ₂ - 22)
6900/(200*0.444) = θ₂ - 22
77.70 = θ₂ - 22
θ₂ - 22 = 77.7
θ₂ = 77.7 + 22 = 99.7
So initial temperature before cooling ≈ 100°C . Option C.
The same voltage will appear across all resistors in parallel.
The old style (incandescent) light bulb converts more energy
into heat than it does into light. If you're using it mainly as a
source of light, then it's a bummer, and its efficiency is very low.
BUT ... if you're using an incandescent light bulb as a heater, then
its efficiency is much better. It all depends on your point of view.
Before answering this question, first we have to understand the effect of ratio of surface area to volume on the rate of diffusion.
The rate of diffusion for a body having larger surface area as compared to the ratio of surface area to volume will be more than a body having less surface area. Mathematically it can written as-
V∝ R [ where v is the rate of diffusion and r is the ratio of surface area to volume]
As per the question,the ratio of surface area to volume for a sphere is given 
The surface area to volume ratio for right circular cylinder is given 
Hence, it is obvious that the ratio is more for right circular cylinder.As the rate diffusion is directly proportional to the surface area to volume ratio,hence rate of diffusion will be more for right circular cylinder.
Hence the correct option is B. The rate of diffusion would be faster for the right cylinder.