Answer:
The pressure in the chamber are of p= 0.127 atm.
Explanation:
n= 2.5 moles
T= 310 K
V= 0.5 m³ = 500 L
R= 0.08205746 atm. L /mol . K
p= n*R*T/V
p= 0.127 atm
Answer:0.0909 kJ/K
Explanation:
Given
Temperature of hot Reservoir 
Temperature of cold Reservoir 
Heat of 100 kJ is transferred form hot reservoir to cold reservoir
Hot Reservoir is Rejecting heat therefore 
Heat is added to Reservoir therefore 
Entropy change for system



As entropy change is Positive therefore entropy Principle is satisfied
Answer:N=0
Explanation:
Given


both blocks experiencing free fall so net weight of block during free fall is zero thus there is no normal reaction between them.
N=0
Answer:
Ft = 17.48°C
Explanation:
Ft is the final temperature. However, ice absorbs heat during two process of melting and cooling and as such, there is no loss of heat to or from the surrounding hence by conservation of energy.
Therefore,
Heat absorbed by water of 20g = heat rejected by water of 265g.
So; M(ice)[C(ice) [(ΔT) + LH(ice) + C(water)(ΔT)] = C(water) M(water) (ΔT)
So, 20[(2.108) [0 - (-20)] + 333.5 + 4.187(Ft - 0)]] = (285)(4.187) (25 - Ft)
To get;
7513 + 83.74 Ft = 29832.4 - 1193.3 Ft
So factorizing, we get;
83.74 Ft + 1193.3 Ft = 29832.4 - 7513
So; 1277.04 Ft = 22319.4
So; Ft = 22319.4/1277.04 = 17.48°C