Answer:

Explanation:
For a linear elastic material Young's modulus is a constant that is given by:

Here, F is the force exerted on an object under tensio, A is the area of the cross-section perpendicular to the applied force,
is the amount by which the length of the object changes and
is the original length of the object. In this case the force is the weight of the mass:

Replacing the given values in Young's modulus formula:

No additional force is required because it's already going downhill
Answer:
r1 = 5*10^10 m , r2 = 6*10^12 m
v1 = 9*10^4 m/s
From conservation of energy
K1 +U1 = K2 +U2
0.5mv1^2 - GMm/r1 = 0.5mv2^2 - GMm/r2
0.5v1^2 - GM/r1 = 0.5v2^2 - GM/r2
M is mass of sun = 1.98*10^30 kg
G = 6.67*10^-11 N.m^2/kg^2
0.5*(9*10^4)^2 - (6.67*10^-11*1.98*10^30/(5*10^10)) = 0.5v2^2 - (6.67*10^-11*1.98*10^30/(6*10^12))
v2 = 5.35*10^4 m/s
Answer:
Maybe put them in order ????
Explanation: