Answer:
Mass of KNO3 in the original mix is 146.954 g
Explanation:
mass of
in original 254.5 mixture.
moles of 
moles of
= 0.2926 mol of BaSO4
Therefore,
0.2926 mol of BaCl2,
mass of 
= 60.92 g
the AgCl moles 

= 1.3891 mol of AgCl
note that, the Cl- derive from both,
so
mole of Cl- f NaCl
mol of Cl-
mol of NaCl = 0.8039 moles

then
KNO3 mass = 254.5 - 60.92-46.626 = 146.954 g of KNO_3
Mass of KNO3 in the original mix is 146.954 g
Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

Answer:
Ratio is 1:1
Explanation:
I do not see any coefficients infront of the reactants and the products, therefore, we can automatically assume that every reactant and product is 1 mole. Don't get confused by the 4 off the O. It just means that 1 mole of sulfate has 1 zinc and 4 oxygens.
Answer:
C-Electrical energy changed into mechanical energy
Explanation:
Energy, according to the law of conservation of energy, is said to neither be created or lost but only interchangeable from one form to another. Energy exists in different forms. The process by which one form of energy changes to another is called TRANSFORMATION of energy.
However, certain household appliances or devices bring about this transformation of energy. For example, in a case where Tony turns a fan on when his room becomes uncomfortably hot. The fan uses an electric source to get powered on, which then facilitates the blades of the fan to move fast in order to bring about a cool atmosphere.
The fan converts ELECTRICAL energy (electric source) into MECHANICAL energy (moving energy).
The heat capacity or thermal capacity of a body is the quotient between the amount of heat energy transferred to a body or system in any process and the change in temperature it experiences. In a more rigorous form, it is the energy necessary to increase the temperature of a certain substance by one temperature unit. [1] It indicates the greater or lesser difficulty that said body presents in experiencing changes in temperature under the supply of heat. It can be interpreted as a measure of thermal inertia. It is an extensive property, since its magnitude depends not only on the substance but also on the amount of matter in the body or system; therefore, it is characteristic of a particular body or system. For example, the heat capacity of the water in an Olympic-size swimming pool will be greater than that of the water in a glass. In general, heat capacity also depends on temperature and pressure.
Explanation:
espero te sirva, me demore en un chingo en traducirte....
sinceramente eres la primera persona a la que le tradusco la tarea xd
I'm Latin American
do you want to be my friend