Because of the power of the light it is very strong so that is why light reaches all the way to earth
The force require to keep grouper submerged is 8.207N.
According to Archimedes principle buoyant force of any object must equal to weight of fluid it displaced.
The expression for the force exerted to stay submerged in salt water is
F = F(b) - w(fish)
where F(b) = buoyant force
w(fish) = weight
now substitute w(b) for F(b)
→ F = Vρg - w(fish)
where V = volume of sea water
ρ = density of sea water
Now by Archimedes principle V = m(fish) / ρ(fish)
→ F = (m(fish) / ρ (fish) ) ρg - m(fish)g
F = (85 kg/1015 kg-m^-3) (1.025× 10³ kg-m^-3) (9.8 m/s^2)
- (85kg) × 9.8 m/s^2
F = 841.207N - 833N
F = 8.207 N
Hence, the force require to keep grouper submerged is 8.207N.
Learn more about Archimedes Principle here:
brainly.com/question/15076878
#SPJ4
Answer:
As b ∝ (L/r²) and
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
hence,
the Sun appear brighter in the sky
Explanation:
The brightness (b) is directly proportional to the Luminosity of the star (L) and inversely proportional to the square of the distance between the star and the observer (r).
thus, mathematically,
b ∝ (L/r²)
now,
given
L for sirius is 23 times more than the sun i.e 23L
now,
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
thus,
using the the relation between conclude that the value of brightness for the Sirius comes very very low as compared to the value for brightness for the Sun.
hence, the sun appears brighter
Answer:
P V = N R T ideal gas equation
P2 / P1 = T2 / T1 where the other variables are constant
P2 = (T2 / T1) * P1 = (313 / 293) * 40 psi = 42.7 psi