Answer:
T₂ = 392 K
Explanation:
Given that,
Initial volume of the hot air balloon, V₁ = 55500 m³
Initial temperature, T₁ = 21°C = 294 K
Final volume, V₂ = 74000 m³
We need to find the final temperature inside the balloon. The relation between the temperature and volume is given by charles law i.e.

Where
T₂ is the final temperature
So,

So, the new temperature is 392 K.
Answer:
A. K
Step-by-step explanation:
Remember the trends in the Periodic Table:
- Atomic radii <em>decrease</em> from left to right across a Period.
- Atomic radii <em>increase</em> from top to bottom in a Group.
- Ionic radii of metal cations are <em>smaller</em> than those of their atoms.
Thus, the largest atoms are in the lower left corner of the Periodic Table.
The diagram below shows that K is closest to the lower left, so it is the largest atom. It is also larger than any of the cations.
Oxygen is needed to carry out a lot of biochemical processes in the body. If the amount of oxygen available to the blood decreases significantly a lot of things will go wrong in the body. For instance, lack of adequate oxygen will lead to the death of neurons which will eventually leads to brain cells death and irreparable brain damage. Oxygen is also needed for cellular respiration, without respiration, there will not be oxygen for carrying out various cellular activities and this will result into death. Oxygen deprivation will also leads to difficulty in breathing and other associated problems.
The variable would be the distance you dropped them.
Answer:
B- Sodium loses an electron.
D- Fluorine gains an electron.
Sodium is oxidized.
Explanation:
The reaction equation is given as:
Na + F → NaF
In this reaction, Na is the reducing agent. It loses an electron and then becomes oxidized. By so doing, Na becomes isoelectronic with Neon.
Fluorine gains the electron and then becomes reduced. This makes fluorine also isoelectronic with Neon.
This separation of charges on the two species leads to an electrostatic attraction which forms the ionic bonds.