Boyle's law states that pressure is inversely proportional to volume of gas at constant temperature
PV = k
where P - pressure , V - volume and k - constant
P1V1 = P2V2
where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
substituting these values in the equation
1.25 atm x 0.75 L = P x 1.1 L
P = 0.85 atm
final pressure is B) 0.85 atm
Answer:
heroic
Explanation:
Bayer, a German pharmaceutical company, named the substance it synthesized "heroin", probably from the word heroisch, German for heroic, because in field studies people using the medicine felt "heroic".
BTW, I found this information on this wedsite: https://www.answers.com/Q/Where_did_heroin_get_its_name
Also, if you want some more history about this drug, you can visit this article: https://www.narconon.org/drug-information/heroin-history.html
The masses are always equal. Since matter can not be created nor destroyed, you will have the same amount of mass as you did before the reaction as you do after.
Answer:
friction
Explanation:
the resistance that one surface or object encounters when moving over another.
This is a straightforward question related to the surface energy of the droplet.
<span>You know the surface area of a sphere is 4π r² and its volume is (4/3) π r³. </span>
<span>With a diameter of 1.4 mm you have an original droplet with a radius of 0.7 mm so the surface area is roughly 6.16 mm² (0.00000616 m²) and the volume is roughly 1.438 mm³. </span>
<span>The total surface energy of the original droplet is 0.00000616 * 72 ~ 0.00044 mJ </span>
<span>The five smaller droplets need to have the same volume as the original. Therefore </span>
<span>5 V = 1.438 mm³ so the volume of one of the smaller spheres is 1.438/5 = 0.287 mm³. </span>
<span>Since this smaller volume still has the volume (4/3) π r³ then r = cube_root(0.287/(4/3) π) = cube_root(4.39) = 0.4 mm. </span>
<span>Each of the smaller droplets has a surface area of 4π r² = 2 mm² or 0.0000002 m². </span>
<span>The surface energy of the 5 smaller droplets is then 5 * 0.000002 * 72.0 = 0.00072 mJ </span>
<span>From this radius the surface energy of all smaller droplets is 0.00072 and the difference in energy is 0.00072- 0.00044 mJ = 0.00028 mJ. </span>
<span>Therefore you need roughly 0.00028 mJ or 0.28 µJ of energy to change a spherical droplet of water of diameter 1.4 mm into 5 identical smaller droplets. </span>