This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
Answer:
M = 328.70g
Explanation:
From the given values:
V = 346 cm³
M of 1 cm³ of Polythene = 0.95g or 95/100g
Solve:
M = <u>(95×346)</u>
10
= <u>3</u><u>2</u><u>8</u><u>7</u><u>0</u>
100
M = 328.70g
Answer:
<em>a) 3.6 ft</em>
<em>b) 12.4 ft</em>
Explanation:
Distance between mirrors = 6.2 ft
difference from from the mirror you face = 1.8 ft
a) you stand 1.8 ft in front of the mirror you face.
According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,
your distance from your first "front" image = 1.8 ft + 1.8 ft = <em>3.6 ft</em>
b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.
the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,
the first image of your back will be 4.4 ft into the back mirror,
therefore your distance from your first "back" image = 8 + 4.4 = <em>12.4 ft</em>
Different layers represent clouds made of gases that condense at different temperatures.
Answer:
C is halved
Explanation:
The frequency and the wavelength of a wave are related by the equation:

where
v is the speed of the wave
f is the frequency
is the wavelength
From the equation above, we see that for a given wave, if the wave is travelling in the same medium (and so, its speed is not changing), then the frequency and the wavelength are inversely proportional to each other.
Therefore, if the frequency doubles, the wavelength will halve in order to keep the speed constant:
