Answer:
The charge is 
Explanation:
Given that,
Distance = 2.5 mm
Electric field = 800 NC
Length 
We need to calculate the linear charge density
Using formula of linear charge density


Put the value into the formula


We need to calculate the charge
Using formula of charge

Put the value into the formula


Hence, The charge is 
Given:
Water, 2 kilograms
T1 = 20 degrees Celsius, T2 = 100
degrees Celsius.
Required:
Heat produced
Solution:
Q (heat) = nRT = nR(T2 = T1)
Q (heat) = 2 kilograms (4.184 kiloJoules
per kilogram Celsius) (100 degrees Celsius – 20 degrees Celsius)
<u>Q (heat) = 669.42 Joules
</u>This is the amount of heat
produced in boiling 2 kg of water.
In this question all required information's are already provided. Based on these details the answer to the question can be easily determined. Let us now write down all the information's that are already given.
Mass of the roller coaster = 1000 kg
Velocity of the roller coaster = 20.0 m/s
We know the formula for finding the kinetic energy is
Kinetic energy = 0.5 * mass * (velocity) ^2
= 0.5 * 1000 * (20)^2
= 0.5 * 1000 * 400
= 200000 Joules
So the Kinetic energy of the roller coaster is 200000 joules.
i hope this helps you friend good luck on your quiz or lesson
The solution to the questions are given as


- the direction of induced current will be Counterclock vise.
<h3>What is the direction of the
current induced in the loop, as viewed from above the loop.?</h3>
Given, $B(t)=(1.4 T) e^{-0.057 t}$




(b) 

c)
In conclusion, the direction of the induced current will be Counterclockwise.
Read more about current
brainly.com/question/13076734
#SPJ1
Answer:
By Applying pressure to the brakes
Explanation:
Driving cars through deep water that is more than 10cm can make the cars to float. Most modern cars are usually water- tight so they can start to float through water that is about 30cm deep, fast moving water is very powerful so one needs to be very careful when driving.
If the brakes are wet test them by pressing or tapping on them gently.
You can as well dry brakes by driving in low gear and applying pressure to the brakes.