Answer:
The speed of light is the speed at which light travels. No, an object cannot move at the speed of light.
Explanation:
The speed of light is 186,000 miles per second. An object with mass cannot move at the speed of light since it would take an infinite amount of energy to achieve that velocity, since only massless particles can travel at the speed of light. Also, you would have to factor in air friction, meaning even if an object were to reach such high speeds, it would instantly disintegrate.
Answer:
Carbohydrates
Explanation:
Increased exercise intensity means the overall need for energy increases. As we increase exercise intensity we increase our glucose uptake and oxidation which far exceeds uptake, indicating that muscle stores of glycogen are being used. At moderate intensities (65%) there is an increased need for muscle glycogen and muscle triglycerides which is fat. At higher levels of intensities (85%) there is an even greater need for energy, and this is met almost solely by an increased uptake of glucose from the blood and from muscle glycogen.
In the case of fats as an energy fuel source at high intensities, increasing levels of intensity increases fat oxidation but once we get into higher levels of intensity, we return to levels of fat oxidation similar to very low intensities.
If there were an element above fluorine, its state would be a gas. This is because fluorine is located in the non-metal section of the periodic table which can all be found as a gas at room temperature.
Answer:
V = 34.55 L
Explanation:
Given that,
No of moles, n = 1.4
Temperature, T = 20°C = 20 + 273 = 293 K
Pressure, P = 0.974 atm
We need to find the volume of the gas. It can be calculated using Ideal gas equation which is :
PV=nRT
R is gas constant, 
Finding for V,

So, the volume of the gas is 34.55 L.
Answer:
Similarities: both state the mass of chemical species and they have the same numerical value
Differences: molecular mass refers to one single molecule and molar mass refers to one mole of a molecule
Explanation:
The molecular mass is the value of the mass of each molecule and it is measured in mass units (u). It is calculated adding the mass of each atom of the molecule.
The molar mass is the value of the mass of one mole of molecules, which means the mass of 6.022140857 × 10²³ molecules. The unit is g/mol.
For example, we can consider the methane molecule, which has the chemical formula of CH₄:
Molecular mass CH₄ = C mass + 4 x (H mass)
Molecular mass CH₄ = 12.01 + 4 x (1.01)
Molecular mass CH₄ = 16.05 u
Now to calculate the molar mass we multiply the value of the molecular mass by the Avogadro number and convert the units to g/mol:
Molar mass CH₄: 16.05 x
x 6.022140857 × 10²³ mol⁻¹
Molecular mass CH₄ = 16.05 g / mol