Answer:
Hydrosulfuric acid will act as limiting reactant.
Explanation:
Given data:
Mass of iron(III) chloride = 3243.0 g
Mass of hydrosulfuric acid = 511.8 g
Limiting reactant = ?
Solution:
Chemical equation:
2FeCl₃ + 3H₂S → Fe₂S₃ + 6HCl
Number of moles of iron(III) chloride:
Number of moles = mass/molar mass
Number of moles = 3243.0 g/ 162.2 g/mol
Number of moles = 20 mol
Number of moles of hydrosulfuric acid:
Number of moles = mass/molar mass
Number of moles = 511.8 g/ 34.1 g/mol
Number of moles = 15 mol
Now we will compare the moles of both reactant with products
FeCl₃ : Fe₂S₃
2 : 1
20 : 1/2 ×20 = 10
FeCl₃ : HCl
2 : 6
20 : 6/2 ×20 = 60
H₂S : Fe₂S₃
3 : 1
15 : 1/3 ×15 = 5
H₂S : HCl
3 : 6
15 : 6/3 ×15 = 30
Hydrosulfuric acid producing less number of moles of product thus, it will act as limiting reactant.
Answer:
C
Explanation:
Increasing temp causes increased molecule movment in sample 2
To determine whether the crown was made of pure gold or not, we need to compare the density of gold (19.3 g/mL) to the density of the crown.
The formula for density is

we know the mass of the crown is 714 grams and its volume is 38.3 mL. (Because it displaces 38.3 mL of water)
Using this information, we can plug the numbers into our density formula to solve for the density of the crown.

The density of the crown is 18.6 g/mL, thus the crown was not made of pure gold, as that has a density of 19.3 g/mL. In conclusion, the goldsmith tried to screw over the king.
In quantum mechanics, an atomic orbital is a mathematical function that describes the wave-like behavior of either one electron or a pair of electrons in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus.