A wagon is pulled at an angle of 30 degrees to the horizontal.
Explanation:
Given that,
Mass of the car, m₁ = 1250 kg
Initial speed of the car, u₁ = 7.39 m/s
Mass of the truck, m₂ = 5380 kg
It is stationary, u₂ = 0
Final speed of the truck, v₂ = 2.3 m/s
Let v₁ is the final velocity of the car. Using the conservation of momentum as :



So, the final velocity of the car is 2.5 m/s but in opposite direction. Hence, this is the required solution.
A perfectly elastic<span> collision is defined as one in which there is no loss of </span>kinetic energy<span> in the collision. Therefore, we just add the kinetic energies of each system. We calculate as follows:
KE = 0.5(</span>1.0 × 10^3)(12.5 )^2 + 0.5(1.0 × 10^3)(12.5 )^2
KE = 156250 J = 1.6 x 10^5 J -------> OPTION A