Answer:
a) Δφ = 1.51 rad
, b) x = 21.17 m
Explanation:
This is an interference problem, as they indicate that the distance AP is on the x-axis the antennas must be on the y-axis, the phase difference is
Δr /λ = Δfi / 2π
Δfi = Δr /λ 2π
Δr = r₂-r₁
let's look the distances
r₁ = 57.0 m
We use Pythagoras' theorem for the other distance
r₂ = √ (x² + y²)
r₂ = √(57² + 9.3²)
r₂ = 57.75 m
The difference is
Δr = 57.75 - 57.0
Δr = 0.75 m
Let's look for the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 96.0 10⁶
λ = 3.12 m
Let's calculate
Δφ = 0.75 / 3.12 2π
Δφ = 1.51 rad
b) for destructive interference the path difference must be λ/2, the equation for destructive interference with φ = π remains
Δr = (2n + 1) λ / 2
For the first interference n = 0
Δr = λ / 2
Δr = r₂ - r₁
We substitute the values
√ (x² + y²) - x = 3.12 / 2
Let's solve for distance x
√ (x² + y²) = 1.56 + x
x² + y² = (1.56 + x)²
x² + y² = 1.56² + 2 1.56 x + x²
y2 = 20.4336 +3.12 x
x = (y² -20.4336) /3.12
x = (9.3² -20.4336) /3.12
x = 21.17 m
This is the distance for the first minimum
Complete Question
A radio technician measures the frequency of an AM radio transmitter. The frequency is 14603 kHz . What is the frequency in megahertz? Write your answer as a decimal.
Answer:
The value is 
Explanation:
From the question we are told that
The frequency is 
Generally


=> 
=> 
Answer:
Exophthalmos
Explanation:
Exophthalmos is a disorder which can be either bilateral or unilateral. Sometimes it is also known by other names like Exophthalmus, Excophthamia, Exobitism.
It is basically the bulging of eye anterior out of orbit which if left unattended may result in eye openings even while sleeping consequently resulting in comeal dryness and damage which ultimately may lead to blindness.
It is commonly caused by trauma or swelling of eye surrounding tissues resulting from trauma.
<span>Velocity, you divide distance/time </span>
Answer:
v = 6t² + t + 2, s = 2t³ + ½ t² + 2t
59 m/s, 64.5 m
Explanation:
a = 12t + 1
v = ∫ a dt
v = 6t² + t + C
At t = 0, v = 2.
2 = 6(0)² + (0) + C
2 = C
Therefore, v = 6t² + t + 2.
s = ∫ v dt
s = 2t³ + ½ t² + 2t + C
At t = 0, s = 0.
0 = 2(0)³ + ½ (0)² + 2(0) + C
0 = C
Therefore, s = 2t³ + ½ t² + 2t.
At t = 3:
v = 6(3)² + (3) + 2 = 59
s = 2(3)³ + ½ (3)² + 2(3) = 64.5