Answer:
Airplane speed relative to the ground is 260 km/h and θ = 22.6º direction from north to east
Explanation:
This is a problem of vector composition, a very practical method is to decompose the vectors with respect to an xy reference system, perform the sum of each component and then with the Pythagorean theorem and trigonometry find the result.
Let's take the north direction with the Y axis and the east direction as the X axis
Vy = 240 km / h airplane
Vx = 100 Km / h wind
a) See the annex
Analytical calculation of the magnitude of the speed and direction of the aircraft
V² = Vx² + Vy²
V = √ (240² + 100²)
V = 260 km/h
Airplane speed relative to the ground is 260 km/h
Tan θ = Vy / Vx
tan θ = 100/240
θ = 22.6º
Direction from north to eastb
b) What direction should the pilot have so that the resulting northbound
Vo = 240 km/h airplane
Vox = Vo cos θ
Voy = Vo sin θ
Vx = 100 km / h wind
To travel north the speeds the x axis (East) must add zero
Vx -Vox = 0
Vx = Vox = Vo cos θ
100 = 240 cos θ
θ = cos⁻¹ (100/240)
θ = 65.7º
North to West Direction
The speed in that case would be
V² = Vx² + Vy²
To go north we must find Vy
Vy² = V² - Vx²
Vy = √( 240² - 100²)
Vy = 218.2 km / h
Answer:
16.63min
Explanation:
The question is about the period of the comet in its orbit.
To find the period you can use one of the Kepler's law:

T: period
G: Cavendish constant = 6.67*10^-11 Nm^2 kg^2
r: average distance = 1UA = 1.5*10^11m
M: mass of the sun = 1.99*10^30 kg
By replacing you obtain:

the comet takes around 16.63min
<u>C</u> is the correct answer, because energy cannot be created neither destroy. The energy is changing from chemical to from electric to light, and from light to heat.
Answer:
X = 50 g
Explanation:
Please see attached photo for explanation.
From the attached photo,
Anticlock–wise moment = X × 20
Clockwise moment = 100 × 10
Anticlock–wise moment = clockwise moment
X × 20 = 100 × 10
X × 20 = 1000
Divide both side by 20
X = 1000 / 20
X = 50 g
Therefore, the value of X is 50 g