Answer:
A & E
Explanation:
Salt water is a hypertonic solution, meaning it extracts water from whatever is placed in it. When a carrot loses water, it will most likely shrivel up and become limp.
Answer:
The equilibrium constant in terms of concentration that is,
.
Explanation:

The relation of
is given by:

= Equilibrium constant in terms of partial pressure.=98.1
= Equilibrium constant in terms of concentration =?
T = temperature at which the equilibrium reaction is taking place.
R = universal gas constant
= Difference between gaseous moles on product side and reactant side=



The equilibrium constant in terms of concentration that is,
.
C. You should ALWAYS ask the teacher if you don't get something; your friends could be wrong, don't guess it, and NEVER cheat. Hope this helps!!
Variations in electronegativity prompt in the unequal halves of electrons in polar molecules because when one atom is more electronegative than the other, it becomes more polar than the other.
It results in the more electronegative atom to have a slightly negative (-ve) charges, and the other atom to have partial or slightly positive(+ve) charges.
Polar molecules have unequal sharing of electrons because the atoms have unequal attraction for electrons so the sharing is unequal.
The larger the difference in electronegativity between the two atoms, the more the polar the bond.
Hydrogen bonds are involved in unequal sharing of electrons between two atoms.
To know more about variations in electronegativity in polar molecules here :
brainly.com/question/18260584?referrer=searchResults
#SPJ4
Answer:
a. 1.23 V
b. No maximum
Explanation:
Required:
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?
The standard cell potential (E°cell) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E°cell = E°red, cat - E°red, an
If E°cell must be at least 1.10 V (E°cell > 1.10 V),
E°red, cat - E°red, an > 1.10 V
E°red, cat - 0.13V > 1.10 V
E°red, cat > 1.23 V
The minimum standard reduction potential is 1.23 V while there is no maximum standard reduction potential.