This will give substituted product which will be by SN2 mechanism
so here we will get product with inverted geometry
In SN2 mechanism the nucleophile attacks from back side and we always get product with inverted geometry
This is known as Walden inversion.
Answer:
Diphosphorus pentoxide
Carbon dichloride
BCl3
N2H4
Explanation:
These are all covalent compounds. To name covalent compounds, you add prefixes to the beginning of their names depending on what the subscript is of each element. The prefixes are:
1: Mono
2: Di
3: Tri
4: Tetra
5: Penta
6: Hexa
7: Hepta
8: Octa
9: Nona
10: Deca
For example, since the first one is Phopsphorus with a 2 next to it, you add the prefix Di to it.
If the first element in the compound only has one, meaning no number next to it, you do not say mono. This is why we just say "Carbon" for the second one instead of "Monocarbon."
Finally, you always have to end the second element in the compound with "ide." So, "chlorine" becomes "chloride," "oxygen" becomes "oxide," and so on.
Answer:
B
Explanation:
This is because exothermic reactions occurs when bnds are formed, and involves the release of energy.
Endothermic reaction occur when bonds are broken,and involves absorption of energy.
but where Is the volume in order for us to determine the concentration. since we have moles in H+ ions
then you can say
concentration = M*1000/V
Explanation:
Formula to calculate osmotic pressure is as follows.
Osmotic pressure = concentration × gas constant × temperature( in K)
Temperature =
= (25 + 273) K
= 298.15 K
Osmotic pressure = 531 mm Hg or 0.698 atm (as 1 mm Hg = 0.00131)
Putting the given values into the above formula as follows.
0.698 = 
C = 0.0285
This also means that,
= 0.0285
So, moles = 0.0285 × volume (in L)
= 0.0285 × 0.100
= 
Now, let us assume that mass of
= x grams
And, mass of
= (1.00 - x)
So, moles of
=
Now, moles of
=
=
= x = 0.346
Therefore, we can conclude that amount of
present is 0.346 g and amount of
present is (1 - 0.346) g = 0.654 g.