Explanation:
As it is given that water level is same as outside which means that theoretically, P = 756.0 torr.
So, using ideal gas equation we will calculate the number of moles as follows.
PV = nRT
or, n = 
= 
= 0.0052 mol
Also, No. of moles = 
0.0052 mol = 
mass = 0.0104 g
As some of the water over which the hydrogen gas has been collected is present in the form of water vapor. Therefore, at
= 24 mm Hg
=
atm
= 0.03158 atm
Now, P = 
= 0.963 atm
Hence, n =
= 0.0056 mol
So, mass of
= 0.0056 mol × 2
= 0.01013 g (actual yield)
Therefore, calculate the percentage yield as follows.
Percent yield = 
=
= 97.49%
Thus, we can conclude that the percent yield of hydrogen for the given reaction is 97.49%.
Answer:
Hence the correct option is an option (b) Sr4, Cl,Br−,Na+.
Explanation:
Bromine and chlorine belong to an equivalent group. As we go down the group the dimensions increases which too there's a charge on the bromine atom. therefore the size of the Br- is going to be larger in comparison to the chlorine atom.
Sr atom is within the second group, and also it's below the above-mentioned atoms.so Sr is going to be the larger one among all the atoms.
Sodium and chlorine belong to an equivalent period .size decrease from left to right. but due to the charge on sodium its size decreases and there's an opportunity that Na+ size could be adequate for Cl.
Here we finally assume that two atoms are of an equivalent size (Na+ and Cl) which are less in size compared to the opposite two(Sr and Br-) during which one is greater (Sr)and the opposite is smaller(Br-).
Answer:
89.6L
Explanation:
1mole of any gas occupies 22.4L. This simply means that,
1mole of CO2 occupies 22.4L at stp.
Therefore, 4moles of CO2 will occupy = 4 x 22.4 = 89.6L